精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=x2﹣3,g(x)=mex , 若方程f(x)=g(x)有三个不同的实根,则m的取值范围是(
A.
B.
C.
D.(0,2e)

【答案】A
【解析】解:设f(x)与g(x)的共同切线的切点为(x0 , y0), ∵f(x)=x2﹣3,g(x)=mex
∴f′(x)=2x,g(x)=mex
∴f′(x0)=g′(x0),f(x0)=g(x0),
∴2x0= ,x02﹣3=
∴x0=x02﹣3,
解得x0=3,或x0=﹣1(舍去)
当x0=3,
∴6=me3 , 即m=
∵方程f(x)=g(x)有三个不同的实根,由图象可知,
∴0<m<
故选:A.

设f(x)与g(x)的共同切线的切点为(x0 , y0),根据导数求出切点,即可求出m的值,结合图象可知m的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图在四棱锥PABCDPC⊥底面ABCDADBCAD=2BC=2,PC=2,ABC是以AC为斜边的等腰直角三角形EPD的中点.

(1)求证:平面EAC⊥平面PCD

(2)求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,,,(), , .

(I)求;

(Ⅱ)猜想数列的通项公式,并证明;

(Ⅲ)设函数,若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,点P(0, ),以原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为 .直线l的参数方程为 为参数).
(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)设直线l与曲线C的两个交点分别为A,B,求 + 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有xf′(x)>x2+3f(x),则不等式8f(x+2014)+(x+2014)3f(﹣2)>0的解集为(
A.(﹣∞,﹣2016)
B.(﹣2018,﹣2016)
C.(﹣2018,0)
D.(﹣∞,﹣2018)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的实轴端点分别为A1 , A2 , 记双曲线的其中的一个焦点为F,一个虚轴端点为B,若在线段BF上(不含端点)有且仅有两个不同的点Pi(i=1,2),使得∠A1PiA2= ,则双曲线的离心率e的取值范围是(
A.(
B.(
C.(1,
D.( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且
(1)求sinB的值;
(2)若D为AC的中点,且BD=1,求△ABD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 ,命题 ,若 的必要不充分条件,则实数 的取值范围是 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像是由函数的图像经如下变换得到:先将图像上所有点的纵坐标伸长到原来的2倍横坐标不变,再将所得到的图像向右平移个单位长度.

求函数的解析式,并求其图像的对称轴方程;

已知关于的方程内有两个不同的解

1求实数m的取值范围;

2证明:

查看答案和解析>>

同步练习册答案