精英家教网 > 高中数学 > 题目详情
8.用a,b,c表示空间三条不同的直线,α,β,γ表示空间三个不同的平面,给出下列命题:
①若a⊥α,b⊥α,则a∥b;      
②若α⊥γ,β⊥γ,则α∥β;
③若b?α,b⊥β,则α⊥β; 
④若c是b在α内的射影,a?α且a⊥c,则a⊥b.
其中真命题的序号是①③④.

分析 根据空间直线和平面,平面和平面之间垂直和平行的性质分别进行判断即可.

解答 解:①根据垂直于同一平面的两条直线互相平行即可得到若a⊥α,b⊥α,则a∥b成立,故①正确;
②垂直于同一平面的两个平面不一定平行,有可能相交,故②错误.
①③④解:①根据垂直于同一平面的两条直线互相平行即可得到若a⊥α,b⊥α,则a∥b成立,故①正确;
②垂直于同一平面的两个平面不一定平行,有可能相交,故②错误.
③根据面面垂直的判定定理知,若b?α,b⊥β,则α⊥β成立,故③正确,
④∵c是b在α内的射影,
∴在b上一点B作BC⊥α,则C在直线c上,
则BC⊥a,
∵a⊥c,
∴a⊥平面BOC,
则a⊥b,故④正确,
故答案为:①③④

点评 本题主要考查空间直线和平面平行或垂直的位置关系的判断,根据相应的判定定理和性质定理是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\frac{x^2+6}{x}$,a>1,若不等式loga+1x-logax+5<f(n)对任意n∈N*恒成立,则实数x的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设an=$\left\{\begin{array}{l}{{2}^{n-1},1≤n≤2,n∈N}\\{\frac{1}{{3}^{n}},n≥3,n∈N}\end{array}\right.$数列{an}的前n项和Sn,则$\underset{lim}{n→∞}$Sn=3$\frac{1}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=lg(x-3)+$\frac{{{{(x-2)}^0}}}{x+1}$的定义域是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2,且椭圆C的短轴的一个端点与左、右焦点F1、F2构成等边三角形.
(1)求椭圆C的标准方程;
(2)设M为椭圆上C上任意一点,求$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}$的最大值与最小值;
(3)试问在x轴上是否存在一点B,使得对于椭圆上任意一点P,P到B的距离与P到直线x=4的距离之比为定值.若存在,求出点B的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.球O是四面体ABCD的外接球(即四面体的顶点均在球面上),若AB=CD=2$\sqrt{2}$,AD=AC=BD=BC=$\sqrt{5}$,则球O的表面积为9π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在2014年APEC领导人会议期间,被人们亲切叫做“蓝精灵”的大学生志愿者参与服务,已知志愿者中专科生、本科生、硕士生、博士生的人数比例为5:15:9:1,拟采用分层抽样的方法,从志愿者中抽取一个120人的样本进行调查,则应从硕士生中抽取36名.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1经过点(4,3),则双曲线C的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{7}}{2}$D.$\frac{\sqrt{13}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图:在多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AD=AC=AB=$\frac{1}{2}$DE=1,∠DAC=90°,F是CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求证:平面BCE⊥平面CDE;
(Ⅲ)求三棱锥D-BCE的体积.

查看答案和解析>>

同步练习册答案