精英家教网 > 高中数学 > 题目详情
1.如图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的”更相减损术“.执行该程序框图,若输入a,b,i的值分别为6,8,0时,则输出的i=(  )
A.3B.4C.5D.6

分析 由循环结构的特点,先判断,再执行,分别计算出当前的a,b,i的值,即可得到结论.

解答 解:模拟执行程序框图,可得:a=6,b=8,i=0,
i=1,不满足a>b,不满足a=b,b=8-6=2,i=2
满足a>b,a=6-2=4,i=3
满足a>b,a=4-2=2,i=4
不满足a>b,满足a=b,输出a的值为2,i的值为4.
故选:B.

点评 本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知正项等差数列{an}中,a1+a2+a3=15,若a1+2,a2+5,a3+13成等比数列,则a10=(  )
A.21B.22C.23D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点P,若|PF|=5,则点F到双曲线的渐近线的距离为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过点P(-3,1),Q(a,0)的光线经x轴反射后与圆x2+y2=1相切,则a的值为-$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某科技博览会展出的智能机器人有 A,B,C,D 四种型号,每种型号至少有 4 台.要求每 位购买者只能购买1台某种型号的机器人,且购买其中任意一种型号的机器人是等可能的.现在有 4 个人要购买机器人.
(Ⅰ)在会场展览台上,展出方已放好了 A,B,C,D 四种型号的机器人各一台,现把他们 排成一排表演节目,求 A 型与 B 型相邻且 C 型与 D 型不相邻的概率;
(Ⅱ)设这 4 个人购买的机器人的型号种数为ξ,求ξ 的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等差数列{an}的前n项和为Sn,若a1=2,a8+a10=28,则S9=(  )
A.36B.72C.144D.288

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,既是偶函数又存在零点的是(  )
A.y=x2+1B.y=|lgx|C.y=cosxD.y=ex-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜求积”公式为$S=\sqrt{\frac{1}{4}[{{a^2}{c^2}-{{({\frac{{{a^2}+{c^2}-{b^2}}}{2}})}^2}}]}$.若a2sinC=4sinA,(a+c)2=12+b2,则用“三斜求积”公式求得△ABC的面积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如果实数x,y满足不等式组$\left\{\begin{array}{l}x≥1\\ x-y+1≤0\\ 2x-y-2≤0\end{array}\right.$则目标函数z=3x-2y的最大值是1.

查看答案和解析>>

同步练习册答案