分析 (1)由2(a3+2)=a2+a4,代入a2+a3+a4=28,求得a3=8,a2+a4=20,根据等比数列通项公式,即可求a1=2,q=2,求得数列{an}的通项公式;
(2)由bn=anlog2an=n•2n,采用“错位相减法”即可求得数列{bn}的前n项和为Sn.
解答 解:设等比数列{an}的首项a1,公比为q,q>0,
依题意可得:2(a3+2)=a2+a4,代入a2+a3+a4=28,
解得:a3=8,a2+a4=20,
∴$\left\{\begin{array}{l}{{a}_{1}{q}^{2}=8}\\{{a}_{1}q+{a}_{1}{q}^{3}=20}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{q=2}\\{{a}_{1}=2}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=32}\\{q=\frac{1}{2}}\end{array}\right.$,
∵数列{an}是单调递增的数列,
∴a1=2,q=2,
∴数列{an}的通项公式为an=2n;
(2)∵bn=anlog2an=n•2n,
∴Sn=1×2+2×22+3×23+…+n•2n,①
2Sn=1×22+2×23+3×24+…+n•2n+1,②
①-②,得-Sn=2+22+23+…+2n-n•2n+1,
=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1,
=2n+1-n•2n+1-2,
=(1-n)•2n+1-2,
∴Sn=(n-1)•2n+1+2.
点评 本题考查等比数列性质,考查等比数列通项公式,考查“错位相减法”求数列的前n项和公式,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(x)=\frac{{{x^2}+x}}{x+1}$与g(x)=x-1 | B. | f(x)=2|x|与$g(x)=\sqrt{4{x^2}}$ | ||
| C. | $f(x)=\sqrt{x^2}$与$g(x)={(\sqrt{x})^2}$ | D. | $y=\sqrt{x+1}\sqrt{x-1}$与$y=\sqrt{{x^2}-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 线段 | B. | 圆 | C. | 椭圆 | D. | 双曲线 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com