【题目】已知点
是抛物线
上一点,点
为抛物线
的焦点,
.
(1)求直线
的方程;
(2)若直线
过点
,与抛物线相交于
两点,且曲线
在点
与点
处的切线分别为
,直线
相交于点
,求
的最小值.
【答案】(1)
;(2)12
【解析】
(1)根据抛物线的定义可由
求出p,即可求得抛物线方程及焦点F,由点P在抛物线上即可求出t从而得点P的坐标,即可写出直线PF的两点式方程;(2)设
,
,求出直线m、n的方程,联立可得直线l的方程,由直线
过点
可得
,所以点
在定直线
上,数形结合可得
的最小值.
(1)因为
,所以
,解得
,
所以
,抛物线方程为:
,
又点
在抛物线上,所以
,又
,所以
,则
,
故直线
的方程为
,
化简得
.
(2)由(1)知,抛物线方程为
,点
.
设
,则
,
,因为
,
所以直线
的方程为
,整理得
,
同理可得直线
的方程为
,设
,
因为直线
相交于点
,
联立
,得直线
的方程为
,又因为直线
过点
,
所以
,即点
在定直线
上,所以
的最小值为
.
科目:高中数学 来源: 题型:
【题目】新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为A,B,C,D,E五个等级.某试点高中2019年参加“选择考”总人数是2017年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2017年和2019年“选择考”成绩等级结果,得到如图表:
![]()
针对该校“选择考”情况,2019年与2017年比较,下列说法正确的是( )
A.获得A等级的人数不变B.获得B等级的人数增加了1倍
C.获得C等级的人数减少了D.获得E等级的人数不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】微博橙子辅导用简单随机抽样方法抽取了100名同学,对其社会实践次数进行调查,结果如下:
![]()
若将社会实践次数不低于12次的学生称为“社会实践标兵”.
(1)将频率视为概率,估计该校1600名学生中“社会实践标兵”有多少人?
(2)从已抽取的8名“社会实践标兵”中随机抽取4位同学参加社会实践表彰活动.
(ⅰ)设A为事件"抽取的4位同学中既有男同学又有女同学”,求事件A发生的概率;
(ⅱ)用X表示抽取的“社会实践标兵”中男生的人数,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,两焦点与短轴的一个端点的连线构成的三角形面积为
.
(I)求椭圆
的方程;
(II)设与圆
相切的直线
交椭圆
于
,
两点(
为坐标原点),
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系内,曲线
的参数方程为
(
为参数).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)把曲线
和直线
化为直角坐标方程;
(2)过原点
引一条射线分别交曲线
和直线
于
,
两点,射线上另有一点
满足
,求点
的轨迹方程(写成直角坐标形式的普通方程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为
(t为参数,0).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为
.
(Ⅰ)写出曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C交于A,B两点,且AB的长度为2
,求直线l的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为满足人民群众便利消费、安全消费、放心消费的需求,某社区农贸市场管理部门规划建造总面积为
的新型生鲜销售市场.市场内设蔬菜水果类和肉食水产类店面共80间.每间蔬菜水果类店面的建造面积为
,月租费为
万元;每间肉食水产店面的建造面积为
,月租费为0.8万元.全部店面的建造面积不低于总面积的80%,又不能超过总面积的85%.①两类店面间数的建造方案为_________种.②市场建成后所有店面全部租出,为保证任何一种建设方案平均每间店面月租费不低于每间蔬菜水果类店面月租费的90%,则
的最大值为_________万元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线
的极坐标方程为
.
(1)写出曲线
的普通方程和直线
的直角坐标方程;
(2)若直线
与曲线
相交于
、
两点,求
的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com