精英家教网 > 高中数学 > 题目详情
15.已知点P(1,1),圆C:x2+y2-4y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求M的轨迹方程;
(2)是否存在点M满足OP⊥OM,若存在请求出点M的坐标;若不存在,请说明理由.

分析 (1)求出圆C圆心,半径为,设M(x,y),则$\overrightarrow{CM}=(x,y-2),\overrightarrow{MP}=(1-x,1-y)$.利用$\overrightarrow{CM}•\overrightarrow{MP}=0$,求出M的轨迹方程.
(2)假设存在点M(x,y),满足OP⊥OM,求出P(1,1),M(x,y),通过$\overrightarrow{OP}•\overrightarrow{OM}=x+y=0$,利用点M的运动轨迹为:${(x-\frac{1}{2})^2}+{(y-\frac{3}{2})^2}=\frac{1}{2}$,将y=-x带入圆的方程,化简得:x2+x+1=0,方程无解,即可得到结果.

解答 解:(1)圆C的方程可化为x2+(y-2)2=4,
所以圆心为C(0,2),半径为2,(2分)
设M(x,y),则$\overrightarrow{CM}=(x,y-2),\overrightarrow{MP}=(1-x,1-y)$.
由题设知$\overrightarrow{CM}•\overrightarrow{MP}=0$,故x(1-x)+(y-2)(1-y)=0,
即${(x-\frac{1}{2})^2}+{(y-\frac{3}{2})^2}=\frac{1}{2}$.(5分)
由于点P在圆C内部,所以M的轨迹方程
是${(x-\frac{1}{2})^2}+{(y-\frac{3}{2})^2}=\frac{1}{2}$.(6分)
(2)假设存在点M(x,y),满足OP⊥OM则  $\overrightarrow{OP}=(1,1),\overrightarrow{OM}=(x,y)$,
若OP⊥OM,P(1,1),M(x,y),$\overrightarrow{OP}•\overrightarrow{OM}=x+y=0$,则y=-x                  (8分)
又因为点M的运动轨迹为:${(x-\frac{1}{2})^2}+{(y-\frac{3}{2})^2}=\frac{1}{2}$,
所将y=-x带入方程${(x-\frac{1}{2})^2}+{(y-\frac{3}{2})^2}=\frac{1}{2}$          (10分)
化简得:x2+x+1=0     (*)
方程  (*)无解,所以不存在满足OP⊥OM的点M.(12分)

点评 本题考查轨迹方程的求法,直线与圆的方程的综合应用,考查计算能力以及转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.以椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的中心O为圆心,以$\sqrt{\frac{ab}{2}}$为半径的圆称为该椭圆的“伴随”.已知椭圆的离心率为$\frac{{\sqrt{3}}}{2}$,抛物线x2=8y的准线过此椭圆的一个顶点.
(Ⅰ) 求椭圆C及其“伴随”的方程;
(Ⅱ)如果直线m:y=x-b与抛物线x2=8y交于M,N两点,且$\overrightarrow{OM}•\overrightarrow{ON}=0$,求实数b的值;
(Ⅲ) 过点P(0,m)作“伴随”的切线l交椭圆C于A,B两点,记△A0B(0为坐标原点)的面积为S△A0B,将S△A0B表示为m的函数,并求S△A0B的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.随机变量ξ的概率分布列为P(ξ=n)=a($\frac{4}{5}$)n(n=0.1.2),其中a为常数,则P(0.1<ξ<2.9)的值为(  )
A.$\frac{16}{25}$.B.$\frac{9}{16}$C.$\frac{36}{61}$D.$\frac{20}{61}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$,AB=1,M是PB的中点.N是AB的中点.
(1)证明:面PAD∥面MNC;
(2)证明:面PAD⊥面PCD;
(3)求PC与面PAD所成的角的正切;
(4)求二面角M-AC-B的正切.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在区间(0,1)随机地取出一个数,则这个数小于$\frac{1}{3}$的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某公司客服中心有四部咨询电话,某一时刻每部电话能否被接通是相互独立的.已知每部电话响第一声时被接通的概率是0.1,响第二声时被接通的概率是0.3,响第三声时被接通的概率是0.4,响第四声时被接通的概率是0.1.假设有ξ部电话在响四声内能被接通.
(Ⅰ)求四部电话至少有一部在响四声内能被接通的概率;
(Ⅱ)求随机变量ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,圆O的半径为2,l为圆O外一条直线,圆心O到直线l的距离|OA|=3,P0为圆周上一点,且∠AOP0=$\frac{π}{6}$,点P从P0处开始以2秒一周的速度绕点O在圆周上按逆时针方向作匀速圆周运动.t秒钟后,点P到直线l的距离用t(t≥0)可以表示为3-2cos(πt+$\frac{π}{6}$),t≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+aln(x+1),其中a≠0
(1)若a=-4,求f(x)的极值;
(2)判断函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠BAD=60°,侧棱PA⊥底面ABCD,E、F分别是PA、PC的中点.
(Ⅰ)证明:PA∥平面FBD;
(Ⅱ)若二面角E-BD-F的大小为60°,求PA的长.

查看答案和解析>>

同步练习册答案