精英家教网 > 高中数学 > 题目详情
5.在△ABC中,角A,B,C所对的边分别为a,b,c,若b=2,B=45°,且此三角形只有一个解,则实数a的取值范围是(0,2]∪{2$\sqrt{2}$}.

分析 由B的度数求出sinB的值,再由b的值,利用正弦定理得出a与sinA的关系式,同时由B的度数求出A+C的度数,再根据三角形只有一解,可得A只有一个值,根据正弦函数的图象与性质得到A的范围,且当A为直角时,也满足题意,进而由A的范围,求出正弦函数的值域,根据a与sinA的关系式,由正弦函数的值域即可可得出a的范围

解答 解:∵B=45°,b=2,
根据正弦定理得:$\frac{a}{sinA}=\frac{b}{sinB}=2\sqrt{2}$,
∴a=2$\sqrt{2}$sinA,
又A+C=180°-45°=135°,且三角形只一解,可得A有一个值,
∴0<A≤45°,
又A=90°时,三角形也只有一解,
∴0<sinA≤$\frac{\sqrt{2}}{2}$,或sinA=1,
又a=2$\sqrt{2}$sinA,
∴a的取值范围为(0,2]∪{2$\sqrt{2}$}.
故答案为:(0,2]∪{2$\sqrt{2}$}.

点评 此题属于解三角形的题型,涉及的知识有:正弦定理,正弦函数的图象与性质,正弦函数的定义域和值域,以及特殊角的三角函数值,考查了学生综合分析问题及基本运算的能力,熟练掌握定理及性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若-1<a<0,则不等式$\frac{2}{a}$-$\frac{1}{1+a}$的最大值为-3-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n}$(n∈N*),则f(1)=$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.z=$\frac{i}{1+i}$对应的点在复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线l:(x+1)m+(y-1)n=0与圆x2+y2=2的位置关系是(  )
A.相切或相交B.相切或相离C.相切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$夹角的度数为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知cosα=-cos2$\frac{α}{2}$,则cos$\frac{α}{2}$的值等于±$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}的前n项和为Sn,a1=1,若n≥2时,an是Sn与Sn-1的等差中项,则S5=81.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设复数z满足z(1-2i)=2+i(其中i为虚数单位),则z的模为(  )
A.1B.$\sqrt{2}$C.$\sqrt{5}$D.3

查看答案和解析>>

同步练习册答案