精英家教网 > 高中数学 > 题目详情
20.直线l:(x+1)m+(y-1)n=0与圆x2+y2=2的位置关系是(  )
A.相切或相交B.相切或相离C.相切D.相离

分析 由题意可得直线经过定点M(-1,1),而点M正好在圆x2+y2=2上,从而得到直线和圆的位置关系.

解答 解:由于直线l:(x+1)m+(y-1)n=0,令m、n的系数分别等于零,求得x=-1、y=1,
可得直线l经过定点M(-1,1),而点M正好在圆x2+y2=2上,
故直线l和圆相交或相切,
故选:A.

点评 本题主要考查直线经过定点问题,直线和圆的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知在△ABC中,角A,B,C的对边是a,b,c,若A:B:C=1:2:3,则a:b:c=(  )
A.1:2:3B.$1:\sqrt{2}:\sqrt{3}$C.$1:\sqrt{3}:2$D.$2:\sqrt{3}:4$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知平面α的一个法向量$\overrightarrow n$=(2,1,2),点A(-2,3,0)在α内,则P(1,1,4)到α的距离为(  )
A.10B.4C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在△ABC中,∠ABC=90°,AB=$\sqrt{3}$,BC=1,P为△ABC内一点,∠BPC=90°.
(Ⅰ)若PB=$\frac{1}{2}$,求PA;
(Ⅱ)若∠APB=150°,设∠PBA=α,求tan2α值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知i为虚数单位,复数z1对应的点是z1(1,1),z2对应的点是z2(1,-1),则$\frac{z_1}{z_2}$=(  )
A.0B.iC.1D.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,若b=2,B=45°,且此三角形只有一个解,则实数a的取值范围是(0,2]∪{2$\sqrt{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.三段论演绎 (1)因为菱形是平行四边形,(2)四边形ABCD是菱形,(3)所以四边形ABCD是平行四边形,以上三段论演绎中“小前提”是(  )
A.(1)B.(2)C.(3)D.(1)(2)(3)都是

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ x+3y≥4\\ 3x+y≤4\end{array}\right.$,则z=2x-y的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=loga(x2+3x+a)的值域为R,则a的取值范围为(0,1)∪(1,$\frac{9}{4}$].

查看答案和解析>>

同步练习册答案