精英家教网 > 高中数学 > 题目详情
函数f(x)=asinx+bcosx+c(a,b,c为常数)的图象过原点,且对任意x∈R总有f(x)≤f(
π
3
)
成立;
(1)若f(x)的最大值等于1,求f(x)的解析式;
(2)试比较f(
b
a
)
f(
c
a
)
的大小关系.
(1)由题意,得
f(0)=b+c=0
f(
π
3
)=
3
2
a+
b
2
+c=1
f′(
π
3
)=
a
2
-
3
2
b=0

解得a=
3
,b=1,c=-1

f(x)=
3
sinx+cosx-1

(2)由(1)可知a=
3
b
、c=-b,
b
a
=
3
3
c
a
=-
3
3

f(
b
a
)-f(
c
a
)=2asin
3
3

f(
b
a
)-f(
c
a
)>0
,即f(
b
a
)>f(
c
a
)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f1(x)=
1
2
x2,f2(x)=alnx(其中a>0).
(Ⅰ)求函数f(x)=f1(x)•f2(x)的极值;
(Ⅱ)若函数g(x)=f1(x)-f2(x)+(a-1)x在区间(
1
e
,e)内有两个零点,求正实数a的取值范围;
(Ⅲ)求证:当x>0时,1nx+
3
4x2
-
1
ex
>0.(说明:e是自然对数的底数,e=2.71828…)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是(  )
A.0≤a<1B.0<a<1C.-1<a<1D.0<a<
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知x=1是函数f(x)=x3-ax(a为参数)的一个极值点.
(1)求a的值;
(2)求x∈[0,2]时,函数f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某化工企业生产某种产品,生产每件产品的成本为3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件;若该企业所生产的产品能全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数a(1≤a≤3).
(Ⅰ)求该企业正常生产一年的利润L(x)与出厂价x的函数关系式;
(Ⅱ)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=alnx-(1+a)x+
1
2
x2,a∈R
(Ⅰ)当0<a<1时,求函数f(x)的单调区间和极值;
(Ⅱ)当x∈[
1
e
,+∞)时f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函f(x)=x3+ax2+bx+5,若x=
2
3
,y=f(x)有极值,且曲线y=f(x)在点(1,f(1))处的切线斜率为3.
(1)求函数f(x)的解析式;
(2)求y=f(x)在[-4,1]上的最大值和最小值.
(3)函数y=f(x)-m有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2+ln(x+1).
(1)求函数g(x)=f(x)-ax2-x的单调区间及最大值;
(2)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.
(3)求证:(1+
1
22
)(1+
1
3^
)(1+
1
42
)(1+
1
52
)…(1+
1
n2
)<e

参考导数公式:(ln(x+1))=
1
x+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

由曲线,直线所围图形面积S=       .

查看答案和解析>>

同步练习册答案