精英家教网 > 高中数学 > 题目详情
已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是
 
考点:旋转体(圆柱、圆锥、圆台)
专题:计算题,空间位置关系与距离
分析:由圆锥的侧面展开图是一个半径为2的半圆知,圆锥的轴截面为边长为2的正三角形.
解答: 解:∵圆锥的侧面展开图是一个半径为2的半圆,
∴圆锥的轴截面为边长为2的正三角形,
则圆锥的高h=2×sin60°=
3
点评:考查了学生的空间想象力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=
p
q
,而
p
=(2-4sin2
ωx
2
,1),
q
=(cosωx,
3
sin2ωx)(x∈R).
(1)若f(
π
3
)最大,求ω能取到的最小正数值;
(2)对(1)中的ω,若f(x)=(2+
3
)sinx+1且x∈(0,
π
2
),求tan
x
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示是函数y=2sin(ωx+φ)(|φ|≤
π
2
,ω>0)的一段图象,则ω=
 
φ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b∈R,a2+2b2=8,则a+b的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=4sin(2x-
π
3
)+1,条件p:
π
4
≤x≤
π
2
,条件q:-2<f(x)-m<2,若p不是q的充分条件,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x+1|+|x+2|+…+|x+2014|+|x-1|+|x-2|+…+|x-2014|的定义域为R,给定两集合A={a∈R|f((12a4-10a2+1)(a2+2))=f(a2+2)}及B={a∈R|f(x)≥f(a),x∈R},则集合A∩B的元素个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2-3x+a,若函数f(x)在区间(1,3)内有零点,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
1
x2
+a(x+
1
x
)+a在定义域上有零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则棱长均为a的正三棱柱外接球的表面积为
 

查看答案和解析>>

同步练习册答案