精英家教网 > 高中数学 > 题目详情
9.在正方体ABCD-A1B1C1D1中任取一点P,则点P在三棱锥B1-ABC的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{12}$

分析 由题意,以体积为测度,即可求出点P在三棱锥B1-ABC的概率.

解答 解:由题意,以体积为测度,设正方体棱长为1,则体积为1,
三棱锥B1-ABC的体积为$\frac{1}{3}×\frac{1}{2}×1×1×1$=$\frac{1}{6}$,
∴点P在三棱锥B1-ABC的概率为$\frac{1}{6}$.
故选:C.

点评 几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.抛物线y2=8x上一点P到焦点的距离为6,在y轴上的射影为Q,O为原点,则四边形OFPQ的面积等于12$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一只昆虫在边长分别为6,8,10的三角形区域内随机爬行,则其到三角形任一顶点的距离不小于2的概率为(  )
A.1-$\frac{π}{12}$B.1-$\frac{π}{10}$C.1-$\frac{π}{6}$D.1-$\frac{π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F1,F2是距离为6的两个定点,动点M满足|MF1|+|MF2|=6,则M点的轨迹是(  )
A.椭圆B.直线C.线段D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设C是∠AOB所在平面外的一点,若∠AOB=∠BOC=∠AOC=θ,其中θ是锐角,而OC与平面AOB所成角的余弦值等于$\frac{\sqrt{3}}{3}$,则θ的值为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{2}$(ax+$\frac{1}{{a}^{x}}$),其中a>0,且a≠1.判断f(m+n)+f(m-n)与2f(m)f(n)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在如图所示的正方体ABCD-A1B1C1D1中,求:
(1)AA1与C1D1所成的角;
(2)AB1与C1D1所成的角;
(3)AC与A1B所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若P,Q是椭圆9x2+16y2=144上两动点,O是其中心,OP⊥OQ,则中心O到直线PQ的距离为$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆台的上、下底面圆半径分别为r,R,且圆台有内切球,求圆台的全面积.

查看答案和解析>>

同步练习册答案