精英家教网 > 高中数学 > 题目详情
14.已知cos($\frac{7π}{8}$-α)=$\frac{1}{5}$,则cos($\frac{π}{8}$+α)=-$\frac{1}{5}$.

分析 由条件利用诱导公式化简所给式子的值,可得结果.

解答 解:∵cos($\frac{7π}{8}$-α)=$\frac{1}{5}$,∴cos($\frac{π}{8}$+α)=cos[π-($\frac{7π}{8}$-α)]=-cos($\frac{7π}{8}$-α)=-$\frac{1}{5}$,
故答案为:-$\frac{1}{5}$.

点评 本题主要考查应用诱导公式化简三角函数式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{4-{x}^{2}},-2≤x≤0}\\{x+2,0<x≤2}\end{array}\right.$,则${∫}_{-2}^{2}f(x)dx$=π+6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x-1|+|x+1|(x∈R)
(1)将函数解析式写成分段函数的形式,
(2)然后画出函数图象,并写出函数的值域;利用图象写出不等式f(x)>x+2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.测量某物体的重量n次,得到如下数据:a1,a2,…,an,其中a1≤a2≤…≤an,若用a表示该物体重量的估计值,使a与每一个数据差的绝对值的和最小.
①若n=2,则a的一个可能值是a1,或a2,或$\frac{{{a_1}+{a_2}}}{2}$(或是[a1,a2]之间任一数);
②若n=9,则a等于a5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$=(-2,-1),$\overrightarrow{a}$•$\overrightarrow{b}$=10,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{5}$,则|$\overrightarrow{b}$|=2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=5,|$\overrightarrow{a}$+$\overrightarrow{b}$|=7.
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)当向量k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$垂直时,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(1,-1),则($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=(  )
A.8B.5C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从2名男生和2名女生选出2名参加某项活动,则选出的2名学生中至少有1名女生的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{5}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在一条笔直公路上有A,B两地,甲骑自行车从A地到B地,乙骑着摩托车从B地到A地,到达A地后立即按原路返回,如图是甲乙两人离A地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:
(1)直接写出y,y与x之间的函数关系式(不必写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;
(2)若两人之间的距离不超过5km时,能够用无线对讲机保持联系,求在乙返回过程中有多少分钟甲乙两人能够用无线对讲机保持联系;
(3)若甲乙两人离A地的距离之积为f(x),求出函数f(x)的表达式,并求出它的最大值.

查看答案和解析>>

同步练习册答案