精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\frac{m-{2}^{x}}{n+{2}^{x+1}}$是R上的奇函数
(1)求m,n的值;
(2)证明:对于任意的x恒有f(x)<c2-3c+3;
(3)若f(a)+f(a-1)>0,求实数a的取值范围.

分析 (1)利用f(0)=0,f(-1)=-f(1),求m,n的值;
(2)f(x)=$\frac{1-{2}^{x}}{2+{2}^{x+1}}$=$\frac{1}{2}$(-1+$\frac{2}{1+{2}^{x}}$)∈(-$\frac{1}{2}$,$\frac{1}{2}$),c2-3c+3=(c-$\frac{3}{2}$)2+$\frac{3}{4}$≥$\frac{3}{4}$,$\frac{3}{4}$>$\frac{1}{2}$,即可证明:对于任意的x恒有f(x)<c2-3c+3;
(3)若f(a)+f(a-1)>0,利用f(x)=$\frac{1-{2}^{x}}{2+{2}^{x+1}}$=$\frac{1}{2}$(-1+$\frac{2}{1+{2}^{x}}$)是减函数,R上的奇函数,建立不等式,即可求实数a的取值范围.

解答 (1)解:∵函数f(x)=$\frac{m-{2}^{x}}{n+{2}^{x+1}}$是R上的奇函数,
∴f(0)=0,∴$\frac{m-1}{n+2}$=0,
∴m=1,
∵f(-1)=-f(1),
∴$\frac{1-\frac{1}{2}}{n+1}$=-$\frac{1-2}{n+4}$,∴n=2;
(2)证明:∵f(x)=$\frac{1-{2}^{x}}{2+{2}^{x+1}}$=$\frac{1}{2}$(-1+$\frac{2}{1+{2}^{x}}$)∈(-$\frac{1}{2}$,$\frac{1}{2}$),c2-3c+3=(c-$\frac{3}{2}$)2+$\frac{3}{4}$≥$\frac{3}{4}$,$\frac{3}{4}$>$\frac{1}{2}$,
∴对于任意的x恒有f(x)<c2-3c+3;
(3)解:f(x)=$\frac{1-{2}^{x}}{2+{2}^{x+1}}$=$\frac{1}{2}$(-1+$\frac{2}{1+{2}^{x}}$)是减函数.
∵f(a)+f(a-1)>0,函数是R上的奇函数
∴f(a)>f(1-a),
∴a<1-a,
∴a<$\frac{1}{2}$.

点评 本题考查函数的奇偶性、单调性,考查函数的值域,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设f(x)是R上的奇函数,且当x∈(0,+∞)时,f(x)=x(1+$\root{2}{x}$),则当x∈(-∞,0)时,f(x)=x(1+$\sqrt{-x}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{{4}^{x}+a}{{2}^{x}}$为偶函数.
(1)求a的值;
(2)判断函数f(x)的单调性,并求其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f($\frac{x}{3}$)=$\frac{1}{2}$f(x),且当0≤x1≤x2≤1时,有f(x1)≤f(x2),则f($\frac{1}{2012}$)的值为$\frac{1}{128}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数y=f(n),满足f(0)=1.且f(n)=nf(n-1).n∈N*
(1)求f(1),f(2),f(3),f(4),f(5);
(2)猜想f(n)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2-3x+2=0,x∈R},B={x|x2-5x>0,x∈N},全集U为N,则满足A⊆C?(∁NB)的集合C的个数有(  )
A.0B.8C.16D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义在R上的偶函数f(x),当x>0时,f(x)=x2-$\frac{2}{x}$,则f(-2)、f(π)、f(-$\sqrt{5}$)的大小关系为(  )
A.f(-2)>f(π)>f(-$\sqrt{5}$)B.f(-2)<f(π)<f(-$\sqrt{5}$)C.f(-2)<f(-$\sqrt{5}$)<f(π)D.f(-2)>f(-$\sqrt{5}$)>f(π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(x)是定义域为R的函数,且图象关于y轴对称,在[0,+∞)上是增函数.解不等式f(x-2)<f(1-x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列不等式中,解集为全体实数的是(  )
A.x2+x+1>0B.$\sqrt{{x}^{2}}$>0C.$\frac{3}{x}$-1<$\frac{3}{x}$D.|x|>0

查看答案和解析>>

同步练习册答案