精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)的图象在区间[a,b]上是连续不断的,且满足f(a)•f(b)<0(a,b∈R,a<b),则函数f(x)在(a,b)内(  )
A、无零点
B、有且只有一个零点
C、至少有一个零点
D、无法确定有无零点
考点:函数零点的判定定理
专题:函数的性质及应用
分析:函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,“f(a)•f(b)<0”根据零点定理f(x)在区间[a,b]上至少有一个零点.
解答: 解:函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,“f(a)•f(b)<0”
∴函数f(x)在区间[a,b]上至少有一个零点,也可能有2,3或多个零点,
故选C.
点评:本题考查零点的存在性定理,属于一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

令f(x)=
1
x+1
,则:f(1)+f(2)+…+f(2011)+f(
1
2011
)+f(
1
2010
)+…+f(
1
2
)+f(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2ax+
1
x
(a∈R).
(1)当0<a≤
1
2
时,试判断f(x)在(0,1]上的单调性并用定义证明你的结论;
(2)对于任意的x∈(0,1],使得f(x)≥6恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数是奇函数的是(  )
A、y=x -
1
3
B、y=2x2-3
C、y=x 
1
2
D、y=x2,x∈[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=
3
AB且SA=SB=SC=AB=BC,则异面直线AC与BE所成的角为(  )  
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,平面BDC1∩平面A1B1C1D1=l,则直线BD与交线l的位置关系是(  )
A、平行B、相交
C、异面D、平行或异面

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的长轴长是短轴长的
3
倍,F1,F2是它的左,右焦点.
(1)若P∈C,且
PF1
PF2
=0,|PF1|•|PF2|=4,求F1,F2的坐标;
(2)在(1)的条件下,过动点Q作以F2为圆心、以1为半径的圆的切线QM(M是切点),且使|QF1|=
2
|QM
|,求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若某几何体的三视图 (单位:cm) 如图所示,则此几何体的体积是(  )cm3
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
>1的一个充分不必要条件是(  )
A、a>bB、a>b>0
C、a<bD、b<a<0

查看答案和解析>>

同步练习册答案