精英家教网 > 高中数学 > 题目详情
给出下列命题
(1)函数f(x)=
1-ex
1+ex
是偶函数
(2)函数f(x)=
1
2x+4
的对称中心为(2,
1
8
) 
(3)长方体的长宽高分别为a,b,c,对角线长为l,则l2=a2+b2+c2
(4)在x∈[0,1]时,函数f(x)=loga(2-ax)是减函数,则实数a的取值范围是(1,2)
(5)函数f(x)=
1
x
在定义域内既使奇函数又是减函数.
则命题正确的是
 
考点:命题的真假判断与应用
专题:计算题,阅读型,函数的性质及应用
分析:由函数的奇偶性的定义,即可判断(1);运用f(x)满足f(a+x)+f(a-x)=2b,则f(x)关于点(a,b)对称,即可判断(2);由长方体的对角线的性质,即可判断(3);由一次函数的单调性和对数函数的单调性即可求得1<a<2,即可判断(4);求出反比例函数的奇偶性和单调区间,即可判断(5).
解答: 解:对于(1),f(x)的定义域为R,f(-x)=
1-e-x
1+e-x
=
ex-1
ex+1
=-f(x),
即f(x)为奇函数,则(1)错误;
对于(2),由于f(2+x)+f(2-x)=
1
22+x+4
+
1
22-x+4
=
1
4(2x+1)
+
2x
4(1+2x)
=
1
4

则f(x)关于点(2,
1
8
)对称,则(2)正确;
对于(3),长方体的长宽高分别为a,b,c,对角线长为l,则l2=a2+b2+c2,则(3)正确;
对于(4),在x∈[0,1]时,函数f(x)=loga(2-ax)是减函数,由t=2-ax为递减函数,则a>1,
又2-a>0,解得a<2,即有1<a<2.则(4)正确;
对于(5),函数f(x)=
1
x
在定义域内为奇函数,在(-∞,0),(0,+∞)是减函数,
不能说f(x)在定义域内为减函数,比如f(-1)<f(1),则(5)错误.
故答案为:(2)(3)(4).
点评:本题考查函数的奇偶性和单调性以及对称性的判断和运用,考查长方体的对角线性质,考查运算能力,属于基础题和易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已]知f(x)=x|x-a|-2.
(1)当a=1时,解f(x)<|x-2|;
(2)当x∈(0,1)时,f(x)<x2-1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公比为负值的等比数列{an}中,a1a5=4,a4=-1.
(1)求数列{an}的通项公式;
(2)设bn=
n+1
1×2
+
n+1
2×3
+…+
n+1
n(n+1)
,求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且x∈[0,2]时,f(x)=log2(x+1),甲、乙、丙、丁四位同学有下列结论:甲:f(3)=1;乙:函数f(x)在[-6,-2]上是减函数;丙:函数f(x)关于直线x=4对称;丁:若m∈(0,1),则关于x的方程f(x)-m=0在0,6]上所有根之和为4,其中结论正确的同学是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x),对任意x∈R和常数a>0,都有f(x+a)=
1
2
-
f(x)-f2(x)
,若函数f(x)的值域为M,则下列成立的是(  )
A、
2
3
∈M
B、
π
5
∈M
C、
2
2
∈M
D、
π
3
∈M

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各组中给出简单命题p和q,构造出复合命题“p∨q”、“p∧q”、“¬p”,其中使得“p∨q”为真命题,“p∧q”为假命题,“¬p”为真命题的一组是(  )
A、p:sin
17π
6
>0,q:log63+log62=1
B、p:log43•log48=
2
3
,q:tan
6
>0
C、p:a∈{a,b},q:{a}⊆{a,b}
D、p:Q⊆R,q:N={正整数}

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x+1)的定义域为(-
1
2
,2),求f(x2)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上四个互异的点A、B、C、D满足:(
AB
-
AC
)•(2
AD
-
BD
-
CD
)=0,则△ABC的形状是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若二项式(ax-
1
x
)6
的展开式的常数项为-160,则
a
1
1
x
dx
=
 

查看答案和解析>>

同步练习册答案