精英家教网 > 高中数学 > 题目详情

已知函数
(1)当时,求函数的极值;
(2)若函数在定义域内为增函数,求实数m的取值范围;
(3)若的三个顶点在函数的图象上,且分别为的内角A、B、C所对的边。求证:

(1)的极大值为的极小值为-2 (2)(3)证明详见解析.

解析试题分析:(1)首先求出函数的定义域,然后求出函数的导函数,在求出时,=0的根,求出函数的单调区间,找到函数的极值即可.(2)由函数在定义域内为增函数,可得x>0时,恒成立,分离出m,得,根据基本不等式得,即的最大值是,即;(3)由为增函数,,,在并根据向量的数量积,去证明即可.
试题解析:解:(1)的定义域为
时,=,得
的变化情况如下表:

           



 1      
     

    +
   

 
+


 
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

定义函数阶函数.
(1)求一阶函数的单调区间;
(2)讨论方程的解的个数;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数R,
(1)求函数f(x)的值域;
(2)记函数,若的最小值与无关,求的取值范围;
(3)若,直接写出(不需给出演算步骤)关于的方程的解集

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中
(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;
(Ⅱ)当时,设,讨论的单调性;
(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中.
(1)若,求的最小值;
(2)如果在定义域内既有极大值又有极小值,求实数的取值范围;
(3)是否存在最小的正整数,使得当时,不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且.
(1)判断的奇偶性并说明理由;
(2)判断在区间上的单调性,并证明你的结论;
(3)若对任意实数,有成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且在时函数取得极值.
(1)求的单调增区间;
(2)若
(Ⅰ)证明:当时,的图象恒在的上方;
(Ⅱ)证明不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 ().
(Ⅰ)当时,判断在定义域上的单调性;
(Ⅱ)若上的最小值为,求的值;
(Ⅲ)若上恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的最小正周期和最小值;
(2)若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案