精英家教网 > 高中数学 > 题目详情
已知抛物线y2=4x,圆F:(x-1)2+y2=1,过点F作直线l,自上而下顺次与上述两曲线交于点A,B,C,D(如图所示),则|AB|•|CD|的值正确的是(  )
A、等于1B、最小值是1
C、等于4D、最大值是4
考点:抛物线的简单性质,直线与圆锥曲线的综合问题
专题:圆锥曲线的定义、性质与方程
分析:利用抛物线的定义和|AF|=|AB|+1就可得出|AB|=xA,同理可得:|CD|=xD,要分l⊥x轴和l不垂直x轴两种情况分别求值,当l⊥x轴时易求,当l不垂直x轴时,将直线的方程代入抛物线方程,利用根与系数关系可求得.
解答: 解:∵y2=4x,焦点F(1,0),准线 l0:x=-1.
由定义得:|AF|=xA+1,
又∵|AF|=|AB|+1,∴|AB|=xA
同理:|CD|=xD
当l⊥x轴时,则xD=xA=1,∴|AB|•|CD|=1          
当l:y=k(x-1)时,代入抛物线方程,得:k2x2-(2k2+4)x+k2=0,
∴xAxD=1,∴|AB|•|CD|=1
综上所述,|AB|•|CD|=1,
故选:A.
点评:本题主要考查抛物线的定义、一元二次方程的根与系数关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

利用计算机在区间(0,1)上产生两个随机数a,b,则方程
b
x
=2a-x有实数根的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是
 
种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在(0,
π
2
)上的函数y=2sinx的图象分别与y=cosx,y=tanx的图象交于点(x1,y1),(x2,y2),则
5
y1+y2=(  )
A、3+
2
B、2+
2
C、3+
3
D、2+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知斜率为k=1的直线与双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)交于A、B两点,若A、B的中点为M(1,3),则双曲线的渐近线方程为(  )
A、x±
3
y=0
B、
3
x±y=0
C、x±2y=0
D、2x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是两个全等的正三角形,给定下列三个命题:①存在四棱锥,其正视图、侧视图如图;②存在三棱锥,其正视图、侧视图如图;③存在圆锥,其正视图、侧视图如图.其中真命题的个数是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,则复数
(2+i)(1-i)2
1-2i
等于(  )
A、2B、-2C、2iD、-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

将n2个正整数1、2、3、…、n2(n≥2)任意排成n行n列的数表.对于某一个数表,计算某行或某列中的任意两个数a、b(a>b)的比值
a
b
,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为(  )
A、
4
3
B、
3
2
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的流程图,若输入x的值为2,则输出x的值为(  )
A、5B、7C、125D、127

查看答案和解析>>

同步练习册答案