精英家教网 > 高中数学 > 题目详情
如图是两个全等的正三角形,给定下列三个命题:①存在四棱锥,其正视图、侧视图如图;②存在三棱锥,其正视图、侧视图如图;③存在圆锥,其正视图、侧视图如图.其中真命题的个数是(  )
A、3B、2C、1D、0
考点:简单空间图形的三视图,命题的真假判断与应用
专题:空间位置关系与距离
分析:根据正四棱锥,三棱锥,圆锥的三视图形状,举出满足条件的实例,分析三个命题的真假,可得答案.
解答: 解:正四棱锥的正视图、侧视图是两个全等的等腰直角三角形,腰长为棱锥的侧高,底为底面边长,故①正确;

将①中正四棱锥沿两条相对的侧棱分成两个三棱锥,则三棱锥的正视图、侧视图跟①完全一致,故②正确;
圆锥的正视图、侧视图是两个全等的等腰直角三角形,腰长为圆锥的母线,底为底面直径,故③正确;
故真命题的个数为3个,
故选A
点评:本题考查的知识点是简单几何体的三视图,熟练掌握常见几何体的三视图形状是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x,y满足
3x+8y+15≥0
5x+3y-6≤0
2x-5y+10≥0
,则z=x-y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个命题,其中所有正确命题的序号为:
 

(1)“b2=ac”是“实数a、b、c成等比数列”的必要而不充分条件;
(2)已知线性回归方程
y
=3+2x,当变量x增加2个单位,其预报值
y
平均增加4个单位;
(3)函数f(x)=ex-(
1
2
x在区间(-1,1)上只有1个零点;
(4)命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2=0”;
(5)设随机变量ξ服从正态分布N(2,9),若P(ξ>c+1)=P(ξ<c-1),则c等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>0,b>0,则不等式-b<
1
x
<a的解集为(  )
A、{x|-
1
a
<x<0或0<x<
1
b
}
B、{x|-
1
b
<x<0或0<x<
1
a
}
C、{x|x<-
1
a
或x>
1
b
}
D、{x|x<-
1
b
或x>
1
a
}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,圆F:(x-1)2+y2=1,过点F作直线l,自上而下顺次与上述两曲线交于点A,B,C,D(如图所示),则|AB|•|CD|的值正确的是(  )
A、等于1B、最小值是1
C、等于4D、最大值是4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)离心率为3,直线y=2与双曲线C的两个交点间的距离为
6
,则双曲线C的方程是(  )
A、2x2-y2=1
B、x2-
y2
8
=1
C、
x2
5
-
y2
10
=1
D、
4x2
5
-
y2
10
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x      (x<0)
log2x (x>0)
若直线y=m与函数f(x)的图象有两个不同的交点,则实数m的取值范围是(  )
A、m∈RB、m>1
C、m>0D、0<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
y2
4
-
x2
5
=1的离心率的值为(  )
A、
1
2
B、
2
3
C、
3
2
D、
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列关于统计的命题,真命题的序号为(  )
①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号的同学在样本中,则样本中另一个同学编号为25号;
②数据:1,2,3,3,4,5的平均数、众数、中位数都相同;
③数据:a,0,1,2,3,若该组数据的平均值为1,则标准差为2;
④根据具有线性相关关系的两个变量的统计数据,所得回归直线方程y=a+bx中,b=2,
.
x
=1,
.
y
=3,则a=1.
A、①②B、②④C、①③D、③④

查看答案和解析>>

同步练习册答案