精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)和g(x)是两个定义在区间M上的函数,若对任意的x∈M,存在常数x0∈M,使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),则称f(x)与g(x)在区间M上是“相似函数”.若f(x)=ax2+2(a-1)x-2lnx+b(a,b∈R)与g(x)=x+$\frac{1}{x}$在区间[$\frac{1}{2}$,2]上是“相似函数”,则a,b的值分别是(  )
A.a=1,b=1B.a=-1,b=-1C.a=1,b=-1D.a=-1,b=1

分析 由基本不等式求得g(x)的最小值及取最小值时x0的值,再利用导数求得使f(x)取得最值时的a值,然后再代入f(x0)=2求得b值.

解答 解:∵当x∈[$\frac{1}{2}$,2]时,g(x)=x+$\frac{1}{x}$≥2,当且仅当x=1时取等号,
∴x0=1,g(x0)=2;
∵f′(x)=2ax+2(a-1)$-\frac{2}{x}$=$\frac{2(ax-1)(x+1)}{x}$,x∈[$\frac{1}{2}$,2],
①当a≤0时,f′(x)<0,故函数f(x)在[$\frac{1}{2}$,2]上单调递减,不合题意;
②当a>0时,由f′(x)<0,得0$<x<\frac{1}{a}$,f′(x)<0,得x$>\frac{1}{a}$,
故函数f(x)在(0,$\frac{1}{a}$)上单调递减,在($\frac{1}{a}$,+∞)上单调递增,依题意得$\frac{1}{a}=1$,即a=1.
$f({x}_{0})=f(1)=a•{1}^{2}+2(a-1)•1-2ln1+b=3a-2+b=2$,解得:b=1.
故选:A.

点评 本题是新定义题,考查了利用基本不等式求函数的最值,训练了利用导数求函数的最值,题目综合性强,关键是对题意的理解,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在△ABC中,已知A=45°,B=30°,则a:b的值为(  )
A.$\sqrt{2}$:1B.1:$\sqrt{2}$C.$\sqrt{2}$:$\sqrt{3}$D.$\sqrt{3}$:$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=Asin(2x+$\frac{π}{3}$),(A>0)的最大值是2.
(1)求A的值;
(2)在给定的坐标系中取合适长度作出f(x)在[0,π]的图象;
(3)在(2)的图象中,若直线y=m(-2<m<2,且m≠$\sqrt{3}$)与y=f(x),x∈[0,π]的图象有两个不同交点x1,x2,试求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=$\sqrt{2}$.平面OCB1的法向量$\overrightarrow{n}$=(x,y,z)为(  )
A.(0,1,1)B.(1,-1,1)C.(0,1,-1)D.(-1,-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆L:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点于抛物线y2=8x的焦点重合,点(2,$\sqrt{2}$)在L 上.
(Ⅰ)求L 的方程;
(Ⅱ)直线l不过原点O且不平行于坐标轴,l与L有两个交点A,B,线段AB的中点为M,证明:OM的斜率与直线l的斜率的乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在定义域内既是奇函数又是减函数的是(  )
A.y=$\frac{1}{x}$B.y=-x+$\frac{1}{x}$
C.y=-x|x|D.y=$\left\{\begin{array}{l}{-x+1,x>0}\\{-x-1,x≤0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{cos(1-{x}^{2}),x<0}\\{-tan2x,x≥0}\end{array}\right.$,则f[f($\frac{π}{8}$)]=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知定义在R上的函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}$)的最小值为-2,其相邻两条对称轴距离为$\frac{π}{2}$,函数图象向左平移$\frac{π}{12}$单位后所得图象对应的函数为偶函数.
(1)求函数f(x)的解析式;
(2)若f($\frac{{x}_{0}}{2}$)=-$\frac{3}{8}$,且x0∈[$\frac{π}{2},π$],求cos(x0+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设复数z满足(1+i)z=2,则z的共轭复数$\overline{z}$=(  )
A.-1-iB.-1+iC.1-iD.1+i

查看答案和解析>>

同步练习册答案