精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}{cos(1-{x}^{2}),x<0}\\{-tan2x,x≥0}\end{array}\right.$,则f[f($\frac{π}{8}$)]=(  )
A.-1B.0C.1D.2

分析 根据分段函数的表达式代入进行求解即可.

解答 解:∵f($\frac{π}{8}$)=-tan(2×$\frac{π}{8}$)=-tan$\frac{π}{4}$=-1,
则f(-1)=cos[1-(-1)2]=cos0=1,
故选:C

点评 本题主要考查函数值的计算,根据分段函数的表达式利用代入法进行求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数y=sinx+cosx+sinxcosx的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等差数列{an}中,a3=5,S6=36,则S9=(  )
A.17B.19C.81D.100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)和g(x)是两个定义在区间M上的函数,若对任意的x∈M,存在常数x0∈M,使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),则称f(x)与g(x)在区间M上是“相似函数”.若f(x)=ax2+2(a-1)x-2lnx+b(a,b∈R)与g(x)=x+$\frac{1}{x}$在区间[$\frac{1}{2}$,2]上是“相似函数”,则a,b的值分别是(  )
A.a=1,b=1B.a=-1,b=-1C.a=1,b=-1D.a=-1,b=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.$\frac{i-1}{1+i}$=(  )
A.-iB.iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图是一个空间几何体的三视图,则该几何体的侧面积是(  )
A.3+$\sqrt{2}$+$\sqrt{3}$B.$\frac{2}{3}$C.2+$\sqrt{2}$+$\sqrt{3}$D.5+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在等腰直角△ABC中,AB=AC=4,点P是边AB上异于A、B的一点,光线从点P出发经过BC、CA反射后又回到点P,光线交线段BC于点Q,交线段CA于点R,若光线QR经过△ABC的重心,求线段AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,平面四边形ABCD中,CD=$\sqrt{3}$,∠CBD=30°,∠BCD=120°,AB=$\sqrt{5}$,AD=2$\sqrt{2}$,求
(Ⅰ)BD;
(Ⅱ)∠ADB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知命题p:“若a2=b2,则a=b”,则命题p的否命题为若a2≠b2则a≠b,该否命题是一个真命题.(填“真”,“假”)

查看答案和解析>>

同步练习册答案