精英家教网 > 高中数学 > 题目详情
15.(1)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x)的解析式
(2)函数f(x)=$\frac{{{x^2}+2x+a}}{x}$,若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.

分析 (1)由题意,可得设f(x)=ax2+bx+c,由f(0)=2,f(x+1)-f(x)=x-1,利用待定系数法求解即可.
(2)根据二次函数的性质求解即可.

解答 解:(1)由题意,设f(x)=ax2+bx+c,
∵f(0)=2,
∴c=2,
则f(x)=ax2+bx+2,
由f(x+1)-f(x)=x-1,即a(x+1)2+b(x+1)+2-ax2-bx-2=x-1
可得:a=$\frac{1}{2}$,b=$-\frac{3}{2}$,
∴f(x)的解析式为:f(x)=$\frac{1}{2}$x2$-\frac{3}{2}$x+2
(2)f(x)=$\frac{{{x^2}+2x+a}}{x}$,
∵f(x)>0恒成立,即$\frac{{{x^2}+2x+a}}{x}$>0在x∈[1,+∞),
∵x∈[1,+∞),
转化为x2+2x+a>0,
令g(x)=x2+2x+a=(x+1)2+a-1,
其对称轴x=-1,开口向上,
可知x在(-1,+∞)是单调递增.
∴只需g(1)>0即可.
得3+a>0,
∴a>-3
故得实数a的取值范围(-3,+∞).

点评 本题考查了函数解析式的求法,利用了待定系数法,同时考查了二次函数的恒成立问题.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.
(1)求证:CD⊥平面ABD;
(2)若AB=BD=CD=2,M为AD中点,求点A到平面MBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{cosB}{b}$=-$\frac{3cosC}{c}$,则角A的最大值是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示,给出下列条件:
①∠B=∠ACD;
②∠ADC=∠ACB;
③$\frac{AC}{CD}$=$\frac{AB}{BC}$;
④AC2=AD•AB.
其中能够单独判定△ABC∽△ACD的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知不过坐标原点的动直线l与抛物线y2=4x交于P,Q两点,若以PQ为直径的圆横过坐标原点O,则直线l在x轴上的截距为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.现有6名高职学生到某公司A、B、C、D、E五个岗位实习,每个岗位至少有一名学生,则学生小王和小李恰好被安排在岗位A实习的概率是$\frac{1}{75}$(结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=lnx-e1-x,g(x)=a(x2-1)-$\frac{1}{x}$.
(1)判断函数y=f(x)零点的个数,并说明理由;
(2)记h(x)=g(x)-f(x)+$\frac{{e}^{x}-ex}{x{e}^{x}}$,讨论h(x)的单调性;
(3)若f(x)<g(x)在(1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E的方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,左、右焦点分别是F1、F2,在椭圆E上有一动点A,过A、F1作一个平行四边形,使顶点A、B、C、D都在椭圆E上,如图所示.
(Ⅰ) 判断四边形ABCD能否为菱形,并说明理由.
(Ⅱ) 当四边形ABCD的面积取到最大值时,判断四边形ABCD的形状,并求出其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2015年12月,京津冀等地数城市指数“爆表”,北方此轮污染为2015年以来最严重的污染过程.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:
时间星期一星期二星期三星期四星期五星期六星期七
车流量x(万辆)1234567
PM2.5的浓度y(微克/立方米)28303541495662
(Ⅰ)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
参考公式:回归直线的方程是$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案