精英家教网 > 高中数学 > 题目详情
2.如图,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.
(1)求证:CD⊥平面ABD;
(2)若AB=BD=CD=2,M为AD中点,求点A到平面MBC的距离.

分析 (1)根据勾股定理的逆定理可证明CD⊥BD,CD⊥AD,故CD⊥平面ABD;
(2)利用等体积法,设点A到平面MBC的距离为d,求出VA-MBC=$\frac{\sqrt{3}}{3}$d,再求出VA-MBC=VC-ABM=$\frac{1}{3}$S△ABM•CD=$\frac{2}{3}$,问题得以解决.

解答 (1)证明:∵AB⊥平面BCD,CD?平面BCD,
∴AB⊥CD,
∵CD⊥BD,AB∩BD=B,
∴CD⊥平面ABD;
(2)解:∵AB⊥平面BCD,BD?平面BCD,
∴AB⊥BD.
∵AB=BD=2,
∴S△ABD=$\frac{1}{2}$×2×2=2,
∵M为AD中点,
∴BM=DM=$\sqrt{2}$,
∵CD⊥BD,
∴BC=2$\sqrt{2}$,
由(1)可知CD⊥平面ABD,
∴CD⊥AD,
∴CM=$\sqrt{D{M}^{2}+C{D}^{2}}$=$\sqrt{6}$
∴BC2=CM2+BM2
∴S△BCM=$\frac{1}{2}$×$\sqrt{2}$×$\sqrt{6}$=$\sqrt{3}$,
设点A到平面MBC的距离为d,
∴VA-MBC=$\frac{\sqrt{3}}{3}$d
∴S△ABM=$\frac{1}{2}$S△ABD=1,
∵CD⊥平面ABD,
∴VA-MBC=VC-ABM=$\frac{1}{3}$S△ABM•CD=$\frac{1}{3}$×1×2=$\frac{2}{3}$.
∴$\frac{2}{3}$=$\frac{\sqrt{3}}{3}$d,
∴d=$\frac{2\sqrt{3}}{3}$,
故点A到平面MBC的距离为$\frac{2\sqrt{3}}{3}$

点评 本题考查线面垂直,考查三棱锥A-MBC的体积,正确运用线面垂直的判定定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细.在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为M,现将该金杖截成长度相等的10段,记第i段的重量为ai(i=1,2,…,10),且a1<a2<…<a10,若48ai=5M,则i=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{nan}的前n项和为Sn,且an=2n,则使得Sn-nan+1+50<0的最小正整数n的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=lnx+ax-\frac{1}{x}+b$.
(1)若函数$g(x)=f(x)+\frac{2}{x}$为减函数,求a的取值范围;
(2)若f(x)≤0恒成立,证明:a≤1-b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x>1}\end{array}\right.$,则f(f(-2))=(  )
A.3B.4C.8D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设双曲线$\frac{{x}^{2}}{3}$-y2=1的两焦点分别为F1,F2,P为双曲线上的一点,若PF1与双曲线的一条渐近线平行,则cos∠F1PF2=(  )
A.$-\frac{11}{13}$B.$-\frac{11}{12}$C.$-\frac{7}{12}$D.$-\frac{1}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线f(x)=$\frac{1}{3}$ax3-blnx在x=1处的切线方程为y=-2x+$\frac{8}{3}$
(Ⅰ)求f(x)的极值;
(Ⅱ)证明:x>0时,$\frac{xf(x)}{4}$$+\frac{x}{{e}^{x}}$<$\frac{{x}^{4}}{6}$$+\frac{2}{e}$(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)=(  )
A.1B.3C.-3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x)的解析式
(2)函数f(x)=$\frac{{{x^2}+2x+a}}{x}$,若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.

查看答案和解析>>

同步练习册答案