精英家教网 > 高中数学 > 题目详情
17.设函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x>1}\end{array}\right.$,则f(f(-2))=(  )
A.3B.4C.8D.$\frac{1}{8}$

分析 由已知中函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x>1}\end{array}\right.$,将x=-2代入可得答案.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x>1}\end{array}\right.$,
∴f(-2)=3.
∴f(f(-2))=f(3)=4.
故选:B

点评 本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.复数z=$\frac{3-2{i}^{3}}{1+i}$的虚部为(  )
A.-$\frac{1}{2}$B.-1C.$\frac{5}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.圆x2+y2+2x-6y+1=0关于直线ax-by+3=0(a>0,b>0)对称,则$\frac{1}{a}$$+\frac{3}{b}$的最小值是(  )
A.2$\sqrt{3}$B.$\frac{20}{3}$C.4D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,内角A,B,C所对的边分别为a,b,c,且$b=2\sqrt{3},\sqrt{3}sinC=({sinA+\sqrt{3}cosA})sinB$,则AC边上的高的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合M={1,3,4},N={x|x2-4x+3=0},则M∩N=(  )
A.{3,4}B.{1,4}C.{1,3}D.{3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.
(1)求证:CD⊥平面ABD;
(2)若AB=BD=CD=2,M为AD中点,求点A到平面MBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知n=${∫}_{0}^{2}$x3dx,则(x-$\frac{1}{\root{3}{x}}$)n的展开式中常数项为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一缉私艇巡航至距领海边界线l(一条南北方向的直线)3.8海里的A处,发现在其北偏东30°方向相距4海里的B处有一走私船正欲逃跑,缉私艇立即追击,已知缉私艇的最大航速是走私船最大航速的3倍,假设缉私艇和走私船均按直线方向以最大航速航行.
(1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截成功;(参考数据:sin17°≈$\frac{\sqrt{3}}{6}$,$\sqrt{33}$≈5.7446)
(2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知不过坐标原点的动直线l与抛物线y2=4x交于P,Q两点,若以PQ为直径的圆横过坐标原点O,则直线l在x轴上的截距为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案