分析 由已知及三角形内角和定理,两角和的正弦函数公式可得:$\sqrt{3}$sinAcosB=sinAsinB,由sinA≠0,可得tanB=$\sqrt{3}$,结合B∈(0,π)可求B,利用余弦定理,基本不等式可求12≥ac,进而利用三角形面积公式即可计算得解.
解答 解:由sin(A+B)=sinC,及$\sqrt{3}$sinC=(sinA+$\sqrt{3}$cosA)sinB,
可得:$\sqrt{3}$sinAcosB=sinAsinB,
由于sinA≠0,可得:tanB=$\sqrt{3}$,结合B∈(0,π),可得:B=$\frac{π}{3}$,
由b2=a2+c2-2accosB,可得:12=a2+c2-ac≥ac,
可得:S△ABC=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{4}$ac≤3$\sqrt{3}$,
又由S△ABC=$\frac{1}{2}$bh=$\sqrt{3}$h≤3$\sqrt{3}$,
可得:h≤3,即AC边上的高的最大值为3.
故答案为:3.
点评 本题主要考查了三角形内角和定理,两角和的正弦函数公式,余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
| 地区 | A | B | C |
| 数量 | 100 | 50 | 150 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$ | B. | $\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}-{b^2}}}}$ | ||
| C. | $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$ | D. | $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}-{b^2}}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 8 | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+a,4 | B. | 1+a,4+a | C. | 1,4 | D. | 1,4+a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com