分析 (1)求出函数g(x)的导数,根据g′(x)≤0,分离参数a,求出a的范围即可;
(2)求出函数f(x)的导数,令y=ax2+x+1,通过讨论a的范围,令x0=$\frac{-1-\sqrt{1-4a}}{2a}$,根据函数的单调性得到b≤$\frac{1}{{x}_{0}}$-ax0-lnx0,a=-$\frac{{x}_{0}+1}{{{x}_{0}}^{2}}$,从而证出结论即可.
解答 解:(1)∵g(x)=f(x)+$\frac{2}{x}$=lnx+ax+$\frac{1}{x}$+b,x>0,
g′(x)=$\frac{1}{x}$+a-$\frac{1}{{x}^{2}}$,x>0,
∵g(x)为减函数,
∴g′(x)≤0,即a≤$\frac{1}{{x}^{2}}$-$\frac{1}{x}$=${(\frac{1}{x}-\frac{1}{2})}^{2}$-$\frac{1}{4}$,
∴a≤-$\frac{1}{4}$;
(2)证明:f′(x)=$\frac{1}{x}$+$\frac{1}{{x}^{2}}$+a=$\frac{{ax}^{2}+x+1}{{x}^{2}}$,(x>0),
令y=ax2+x+1,
a≥0时,f′(x)>0,函数f(x)在(0,+∞)递增,
不满足f(x)≤0恒成立,
当a<0时,△=1-4a>0,由ax2+x+1=0,
得x=$\frac{-1-\sqrt{1-4a}}{2a}$>0或x=$\frac{-1+\sqrt{1-4a}}{2a}$<0,
设x0=$\frac{-1-\sqrt{1-4a}}{2a}$,
函数f(x)在(0,x0)上递增,在(x0,+∞)递减,
又f(x)≤0恒成立,故f(x0)≤0,即lnx0+ax0-$\frac{1}{{x}_{0}}$+b≤0,
由上式得b≤$\frac{1}{{x}_{0}}$-ax0-lnx0,
由a${{x}_{0}}^{2}$+x0+1=0得a=-$\frac{{x}_{0}+1}{{{x}_{0}}^{2}}$,
∴a+b≤$\frac{1}{{x}_{0}}$-ax0-lnx0-$\frac{{x}_{0}+1}{{{x}_{0}}^{2}}$=-lnx0+$\frac{1}{{x}_{0}}$-$\frac{1}{{{x}_{0}}^{2}}$+1,
令t=$\frac{1}{{x}_{0}}$,t>0,h(t)=lnt+t-t2+1,
h′(t)=-$\frac{(2t+1)(t-1)}{t}$,
0<t<1时,h′(t)>0,函数h(t)在(0,1)递增,
t≥1时,h′(t)≤0,函数h(t)在(1,+∞)递减,
h(t)≤h(1)=1,
故a+b≤1,即a≤1-b.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道综合题.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | 3 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y2=4x | B. | y2=8x | C. | y2=3x | D. | y2=6x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±x | B. | $y=±\sqrt{3}x$ | C. | y=±2x | D. | y=±3x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com