精英家教网 > 高中数学 > 题目详情
1.抛物线y2=2px(p>0)的焦点为F,过焦点F且倾斜角为$\frac{π}{3}$的直线与抛物线相交于A,B两点,若|AB|=8,则抛物线的方程为(  )
A.y2=4xB.y2=8xC.y2=3xD.y2=6x

分析 抛物线的方程可求得焦点坐标,进而根据斜率表示出直线的方程,与抛物线的方程联立消去y,进而根据韦达定理表示出x1+x2和x1x2,进而利用配方法求得|x1-x2|,利用弦长公式表示出段AB的长求得p,即可得出结论.

解答 解:由题意可知过焦点的直线方程为y=$\sqrt{3}(x-\frac{p}{2})$,
联立抛物线方程整理可得3x2-5px+$\frac{3}{4}$p2=0,
∴x1+x2=$\frac{5}{3}$p,x1x2=$\frac{{p}^{2}}{4}$,
∴|x1-x2|=$\sqrt{\frac{25}{9}{p}^{2}-{p}^{2}}$=$\frac{4}{3}$p,
又|AB|=$\sqrt{1+3}•\frac{4}{3}p$=8求得p=3,
∴抛物线的方程为y2=6x.
故选D.

点评 本题主要考查了抛物线的应用,两点间的距离公式的应用.解题的时候注意利用好韦达定理,设而不求,找到解决问题的途径.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E、F分别为AB和PC的中点,连接EF、BF.
(1)求证:直线EF∥平面PAD;
(2)求三棱锥F-PBE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细.在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为M,现将该金杖截成长度相等的10段,记第i段的重量为ai(i=1,2,…,10),且a1<a2<…<a10,若48ai=5M,则i=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(1+x)(1+$\sqrt{x}$)5的展开式中x2项的系数是15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{{e}^{x}}$,g(x)=lnx,其中e为自然对数的底数.
(1)求函数y=f(x)g(x)在x=1处的切线方程;
(2)若存在x1,x2(x1≠x2),使得g(x1)-g(x2)=λ[f(x2)-f(x1)]成立,其中λ为常数,求证:λ>e;
(3)若对任意的x∈(0,1],不等式f(x)g(x)≤a(x-1)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=-alnx+(a+1)x-$\frac{1}{2}$x2(a>0).
(1)讨论f(x)的单调性;
(2)若f(x)≥-$\frac{1}{2}$x2+ax+b恒成立,求实数ab的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{nan}的前n项和为Sn,且an=2n,则使得Sn-nan+1+50<0的最小正整数n的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=lnx+ax-\frac{1}{x}+b$.
(1)若函数$g(x)=f(x)+\frac{2}{x}$为减函数,求a的取值范围;
(2)若f(x)≤0恒成立,证明:a≤1-b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)=(  )
A.1B.3C.-3D.0

查看答案和解析>>

同步练习册答案