精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=-alnx+(a+1)x-$\frac{1}{2}$x2(a>0).
(1)讨论f(x)的单调性;
(2)若f(x)≥-$\frac{1}{2}$x2+ax+b恒成立,求实数ab的最大值.

分析 (1)求出f(x)的导数,通过a=1,0<a<1,a>1的讨论,从而求出函数的单调区间;
(2)由题意可得alnx-x+b≤0恒成立,令g(x)=alnx-x+b,求出导数,确定函数的单调性,可得函数的最值,即可得到结论.

解答 解:(1)f′(x)=-$\frac{a}{x}$+a+1-x=-$\frac{(x-1)(x-a)}{x}$,(a>0,x>0),
①a=1时,f′(x)=-$\frac{(x-1)^{2}}{x}$≤0,
∴f(x)在(0,+∞)递减;
②0<a<1时,由f′(x)>0,解得:a<x<1,
∴f(x)在(a,1)递增,在(0,a),(1,+∞)递减;
③a>1时,同理f(x)在(1,a)递增,在(0,1),(a,+∞)递减;
(2)∵f(x)≥-$\frac{1}{2}$x2+ax+b恒成立,
∴alnx-x+b≤0恒成立,
令g(x)=alnx-x+b,则g′(x)=$\frac{a-x}{x}$,
∴g(x)在(0,a)上单调递增,在(a,+∞)上单调递减.
∴g(x)max=g(a)=alna-a+b≤0,
∴b≤a-alna,∴ab≤a2-a2lna,
令h(x)=x2-x2lnx(x>0),则h′(x)=x(1-2lnx)
∴h(x)在(0,$\sqrt{e}$)上单调递增,在($\sqrt{e}$,+∞)上单调递减,
∴h(x)max=h($\sqrt{e}$)=e-eln$\sqrt{e}$=$\frac{e}{2}$,
∴ab≤$\frac{e}{2}$.
即ab的最大值为$\frac{e}{2}$.

点评 本题考查导数知识的运用,考查函数的单调区间,考查函数的最值,正确构造函数和分类讨论是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知f(x)=$\left\{\begin{array}{l}{{e}^{x}+ax,x>0}\\{0,x=0}\\{{e}^{-x}-ax,x<0}\end{array}\right.$,若函数f(x)有5个零点,则实数a的取值范围是(  )
A.(-∞,-$\frac{1}{e}$)B.(-∞,-e)C.(e,+∞)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x-$\frac{lnx}{m}$,m∈R,且m≠0.
(1)讨论函数f(x)的单调性;
(2)若m=-1,求证:函数F(x)=x-$\frac{f(x)}{x}$有且只有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{{e}^{x}}{m{x}^{2}+nx+k}$,其中m,n,k∈R.
(1)若m=n=k=1,求f(x)的单调区间;
(2)若n=k=1,且当x≥0时,f(x)≥1总成立,求实数m的取值范围;
(3)若m>0,n=0,k=1,若f(x)存在两个极值点x1、x2,求证:$\frac{e\sqrt{m}}{m}$<f(x1)+f(x2)<$\frac{{e}^{2}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.抛物线y2=2px(p>0)的焦点为F,过焦点F且倾斜角为$\frac{π}{3}$的直线与抛物线相交于A,B两点,若|AB|=8,则抛物线的方程为(  )
A.y2=4xB.y2=8xC.y2=3xD.y2=6x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a,b分别为9,15,则输出的a=(  )
A.1B.2C.3D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的中心在坐标原点O,过C的右顶点和右焦点分别作垂直于x轴的直线,交C的渐近线于A,B和M,N,若△OAB与△OMN的面积之比为1:4,则C的渐近线方程为(  )
A.y=±xB.$y=±\sqrt{3}x$C.y=±2xD.y=±3x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的离心率为(  )
A.$\frac{5}{3}$B.$\frac{4}{3}$C.$\frac{3}{5}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}|=2$,$\overrightarrow a$与$\overrightarrow b$的夹角为60°,则$\overrightarrow b$在$\overrightarrow a$方向上的投影是1.

查看答案和解析>>

同步练习册答案