精英家教网 > 高中数学 > 题目详情
20.已知P是圆x2+y2=R2上的一个动点,过点P作曲线C的两条互相垂直的切线,切点分别为M,N,MN的中点为E.若曲线C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),且R2=a2+b2,则点E的轨迹方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$.若曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$,且R2=a2-b2,则点E的轨迹方程是(  )
A.$\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$B.$\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}-{b^2}}}}$
C.$\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$D.$\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}-{b^2}}}}$

分析 由椭圆与双曲线的定义中的运算互为逆运算,即可得出结论.

解答 解:由于椭圆与双曲线的定义中的运算互为逆运算,即加法与减法互为逆运算,
∴猜想双曲线对应的点E的轨迹方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$,
故选A.

点评 本题考查类比推理,考查学生分析解决问题的能力,正确类比是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知实数x,y满足$\left\{\begin{array}{l}{y≤2x}\\{2x-5y-8≤0}\\{y≤4-x}\end{array}\right.$,则z=x+2y的最小值为(  )
A.$\frac{20}{3}$B.4C.-6D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.2017年春晚分会场之一是凉山西昌,电视播出后,通过网络对凉山分会场的表演进行了调查.调查分三类人群进行,参加了网络调查的观众们的看法情况如下:
 观众对凉山分会场表演的看法 非常好 好
 中国人且非四川(人数比例) $\frac{1}{2}$ $\frac{1}{2}$
 四川人(非凉山)(人数比例)$\frac{2}{3}$  $\frac{1}{3}$
凉山人(人数比例) $\frac{3}{4}$ $\frac{1}{4}$
(1)从这三类人群中各选一个人,求恰好有2人认为“非常好”的概率(用比例作为相应概率);
(2)若在四川人(非凉山)群中按所持态度分层抽样,抽取9人,在这9人中任意选取3人,认为“非常好”的人数记为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.圆x2+y2+2x-6y+1=0关于直线ax-by+3=0(a>0,b>0)对称,则$\frac{1}{a}$$+\frac{3}{b}$的最小值是(  )
A.2$\sqrt{3}$B.$\frac{20}{3}$C.4D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设复数z满足iz=1+2i,则z的共轭复数的虚部为(  )
A.iB.-iC.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,内角A,B,C所对的边分别为a,b,c,且$b=2\sqrt{3},\sqrt{3}sinC=({sinA+\sqrt{3}cosA})sinB$,则AC边上的高的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合M={1,3,4},N={x|x2-4x+3=0},则M∩N=(  )
A.{3,4}B.{1,4}C.{1,3}D.{3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知n=${∫}_{0}^{2}$x3dx,则(x-$\frac{1}{\root{3}{x}}$)n的展开式中常数项为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-4,x>2}\\{\sqrt{-{x}^{2}+2x},0≤x≤2}\end{array}\right.$若F(x)=f(x)-kx-3k在其定义域内有3个零点,则实数k的取值范围是(0,$\frac{\sqrt{15}}{15}$).

查看答案和解析>>

同步练习册答案