精英家教网 > 高中数学 > 题目详情
12.已知集合M={1,3,4},N={x|x2-4x+3=0},则M∩N=(  )
A.{3,4}B.{1,4}C.{1,3}D.{3}

分析 求出N中方程的解得到x的值,确定出N,求出M与N的交集即可.

解答 解:由N中方程变形得:(x-1)(x-3)=0,
解得:x=1或x=3,即N={1,3},
∵M={1,3,4},
∴M∩N={1,3},
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知数列{an}满足:$\frac{{a}_{n}+1}{{a}_{n+1}+1}$=$\frac{1}{2}$,且a2=2,则a4等于(  )
A.-$\frac{1}{2}$B.23C.12D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若实数a满足x+lgx=2,实数b满足x+10x=2,函数f(x)=$\left\{\begin{array}{l}{2ln(x+2)-\frac{a+b}{2},x≤0}\\{{x}^{2}-2,x>0}\end{array}\right.$,则关于x的方程f(x)=x解的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知P是圆x2+y2=R2上的一个动点,过点P作曲线C的两条互相垂直的切线,切点分别为M,N,MN的中点为E.若曲线C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),且R2=a2+b2,则点E的轨迹方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$.若曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$,且R2=a2-b2,则点E的轨迹方程是(  )
A.$\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$B.$\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}-{b^2}}}}$
C.$\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$D.$\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}-{b^2}}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足,${a_n}=2+2{cos^2}\frac{nπ}{2}$,n∈N*,等差数列{bn}满足a1=2b1,a2=b2
(1)求bn
(2)记cn=a2n-1b2n-1+a2nb2n,求cn
(3)求数列{anbn}前2n项的和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x>1}\end{array}\right.$,则f(f(-2))=(  )
A.3B.4C.8D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-a|(a∈R).
(1)若a=1,解不等式f(x)>$\frac{1}{2}$(x+1);
(2)若不等式f(x)+|x-2|≤3有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系xOy中,已知圆C1:(x-4)2+(y-8)2=1,圆C2:(x-6)2+(y+6)2=9.若圆心在x轴上的圆C同时平分圆C1和圆C2的圆周,则圆C的方程是x2+y2=81.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=loga(x+2)-loga(2-x),a>0且a≠1.
(Ⅰ)判断f(x)的奇偶性,并予以证明
(Ⅱ)求关于x的不等式f(x)>0的解集.

查看答案和解析>>

同步练习册答案