精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

(1)若在点处的切线与直线垂直,求实数的值;

(2)求函数的单调区间;

(3)讨论函数在区间上零点的个数.

【答案】(1)(2)见解析(3)见解析

【解析】试题分析:由 直线的斜率为

所以得出a值,(2)确定函数的单调区间 大于零或小于零解不等式即可注意当当 时(3)由(2)可知,

时, 上单调递增,而,故上没有零点;

时, 上单调递增,而,故上有一个零点;只需讨论当时结合草图根据零点所在的区间逐一讨论即可

试题解析:

(1)由题可知的定义域为

因为,所以

又因为直线的斜率为

,解得

(2)由(1)知:

时, ,所以上单调递增;

时,由,由,所以上单调递增,在上单调递减.

综上所述:当时, 上单调递增;当时, 上单调递增,在上单调递减.

(3)由(2)可知,

时, 上单调递增,而,故上没有零点;

时, 上单调递增,而,故上有一个零点;

时,

①若,即时, 上单调递减, 上没有零点;

②若,即时, 上单调递增,在上单调递减,而

,即时, 上没有零点;

,即时, 上有一个零点;

,即时,由,此时, 上有一个零点;

,此时, 上有两个零点;

③若,即时, 上单调递增, 上有一个零点.

综上所述:当时, 上有一个零点;当时, 上没有零点;当时, 上有两个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,地面上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高为10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.

(1)若圆形标志物半径为25m,以PG所在直线为x轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;
(2)若在点P处观测该圆形标志的最大视角(即∠APF)的正切值为 ,求该圆形标志物的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,当k为何值时,
(1) 垂直?
(2) 平行?平行时它们是同向还是反向?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程.

在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)已知点.若点的极坐标为,直线经过点且与曲线相交于两点,设线段的中点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,且 ,f(x)= ﹣2λ| |(λ为常数),求:
(1) 及| |;
(2)若f(x)的最小值是 ,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是 ,则sin2θ﹣cos2θ的值等于(

A.1
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在实数,使得函数对定义域内的任意均满足,且存在使得,存在使得,则称直线为函数分界线.在下列说法中正确的是__________(写出所有正确命题的编号).

①任意两个一次函数最多存在一条分界线”;

分界线存在的两个函数的图象最多只有两个交点;

分界线

分界线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农场计划种植某种新作物,为此对这种作物的两个品种分别称为品种甲和品种乙进行田间试验选取两大块地,每大块地分成小块地,在总共小块地中,随机选小块地种植品种甲,另外小块地种植品种乙

1假设,求第一大块地都种植品种甲的概率;

2试验时每大块地分成小块,即,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量单位:kg/hm2如下表:

分别求品种甲和品种乙的每公顷产量的样本平均和样本方差;根据试验结果,你认为应该种植哪一品种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在测试中,客观题难度的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题,测试前根据对学生的了解,预估了每道题的难度,如表所示:

题号

1

2

3

4

5

考前预估难度

0.9

0.8

0.7

0.6

0.4

测试后,从中随机抽取了20名学生的答题数据进行统计,结果如表:

(Ⅰ)根据题中数据,估计中240名学生中第5题的实测答对人数;

(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为,求的分布列和数学期望;

(Ⅲ)试题的预估难度和实测难度之间会有偏差.设为第题的实测难度,请用设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理.

查看答案和解析>>

同步练习册答案