【题目】已知向量
,
,且
,f(x)=
﹣2λ|
|(λ为常数),求:
(1)
及|
|;![]()
(2)若f(x)的最小值是
,求实数λ的值.
【答案】
(1)
解:
,
,
∵
,
∴cosx≥0,
∴
.
(2)
解:f(x)=cos2x﹣4λcosx=2(cosx﹣λ)2﹣1﹣2λ2,
∵
,
∴0≤cosx≤1,
①当λ<0时,当且仅当cosx=0时,f(x)取得最小值﹣1,这与已知矛盾;
②当0≤λ≤1,当且仅当cosx=λ时,f(x)取得最小值﹣1﹣2λ2,
由已知得
,解得
;
③当λ>1时,当且仅当cosx=1时,f(x)取得最小值1﹣4λ,
由已知得
,解得
,这与λ>1相矛盾、
综上所述,
为所求.
【解析】(1)根据所给的向量的坐标,写出两个向量的数量积,写出数量积的表示式,利用三角函数变换,把数量积整理成最简形式,再求两个向量和的模长,根据角的范围,写出两个向量的模长.(2)根据第一问做出的结果,写出函数的表达式,式子中带有字母系数λ,把式子整理成关于cosx的二次函数形式,结合λ的取值范围,写出函数式的最小值,是它的最小值等于已知量,得到λ的值,把不合题意的舍去.
【考点精析】认真审题,首先需要了解三角函数的最值(函数
,当
时,取得最小值为
;当
时,取得最大值为
,则
,
,
).
科目:高中数学 来源: 题型:
【题目】对于数列
,定义
,
.
(1) 若
,是否存在
,使得
?请说明理由;
(2) 若
,
,求数列
的通项公式;
(3) 令
,求证:“
为等差数列”的充要条件是“
的前4项为等差数列,且
为等差数列”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将圆
为参数)上的每一点的横坐标保持不变,纵坐标变为原来的
倍,得到曲线![]()
(1)求出
的普通方程;
(2)设直线
:
与
的交点为
,
,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,求过线段
的中点且与
垂直的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(Ⅰ)当
时,求曲线
在
处的切线方程;
(Ⅱ)当
时,讨论函数
的单调性;
(Ⅲ)设斜率为
的直线与函数
的图象交于
,
两点,其中
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),在以原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的倾斜角;
(2)设点
,直线
和曲线
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
+
=1(a>b>0)的离心率为
,且过点(1,
).
(I)求椭圆C的方程;
(Ⅱ)设与圆O:x2+y2=
相切的直线l交椭圆C与A,B两点,求△OAB面积的最大值,及取得最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设O为坐标原点,点P的坐标(x﹣2,x﹣y)
(1)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(2)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com