精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=\sqrt{3}{cos^2}x+sinxcosx$,
(1)若$f(a)=\frac{{1+\sqrt{3}}}{2}$,求a;
(2)如果关于x的方程|f(x)|=m在区间(0,π)上有两个不同的实根,求实数m的取值范围.

分析 (1)利用二倍角公式、两角和的正弦函数公式化简函数为一个角的一个三角函数的形式,利用正弦图象,求α;
(2)如果关于x的方程|f(x)|=m,在区间(0,π)上有两个不同的实根,求实数m的取值范围.

解答 解:(1)解:y=$\sqrt{3}$cos2x+sinxcosx
=$\sqrt{3}$×$\frac{1+cos2x}{2}$+$\frac{1}{2}sin2x$=$\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x+\frac{\sqrt{3}}{2}$
=$six(2x+\frac{π}{3})+\frac{\sqrt{3}}{2}$,
∵$f(a)=\frac{{1+\sqrt{3}}}{2}$,∴sin(2α+$\frac{π}{3}$)=$\frac{1}{2}$,解得2$α+\frac{π}{3}$=2k$π+\frac{π}{6}$或2$α+\frac{π}{3}$=2kπ+$\frac{5π}{6}$,
$α=kπ-\frac{π}{12}$或$α=kπ+\frac{π}{4}$ (k∈Z).
(2)画出y=|f(x)|的图象,再画出y=m的图象,   
结合图象可知它们有两个不同的交点的情况;
可得m=0,1-$\frac{\sqrt{3}}{2}$<m<$\sqrt{3}$,$\sqrt{3}$<m<1+$\frac{\sqrt{3}}{2}$.

点评 本题考查三角函数式的化简求值,二倍角公式、两角和的正弦函数公式的应用,考查函数与方程的思想,数形结合思想,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x2+ex,则f'(1)=2+e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知α是第三象限角,化简:$\frac{{cos({\frac{π}{2}+α})cos({2π-α})tan({-α+\frac{3π}{2}})}}{{cot({-α-π})sin({-π-α})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若半径为2的圆心角所对的弧长为4 cm,则这个圆心角大小为2.(用弧度制表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.三角形的三条高的长度分别为$\frac{1}{13}$,$\frac{1}{10}$,$\frac{1}{5}$,则此三角形的形状是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.扇形的圆心角为$\frac{π}{3}$,它所对的弦长是3 cm,则此扇形的面积为$\frac{3π}{2}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,y=f(x).
(1)求证:tan(α+β)=2tanα;
(2)求f(x)的解析式;
(3)若角α是一个三角形的最小内角,试求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2x+2-x.(x∈R)
(1)用单调函数定义证明f(x)在[0,+∞)单调递增;
(2)记f(x)在闭区间[t,t+1]上的最小值为g(t),求g(t)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合A={x|x<2},则(  )
A.∅∈AB.$\sqrt{3}∉A$C.$\sqrt{3}∈A$D.$\sqrt{3}$$\underset{?}{≠}$A

查看答案和解析>>

同步练习册答案