精英家教网 > 高中数学 > 题目详情
12.若半径为2的圆心角所对的弧长为4 cm,则这个圆心角大小为2.(用弧度制表示)

分析 直接利用弧长、半径、圆心角公式,求出扇形圆心角的弧度数.

解答 解:由题意可知,扇形圆心角的弧度数为:α=$\frac{l}{r}$=$\frac{4}{2}$=2.
故答案为:2.

点评 本题考查扇形圆心角的弧度数的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.f(x)=ax2+bx+c(a≠0).
(Ⅰ)f(-1)=0且任意x∈R,x≤f(x)≤$\frac{{{x^2}+1}}{2}$,求f(x);
(Ⅱ)若|f(x)|<1的解集(-1,3),求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.为测得河对岸塔AB的高,先在河岸上选点C,使得塔底A恰好在点C的正西方,此时测得塔顶B点仰角为45°,再由点C沿北偏东30°方向走30米到达D点,在D点测得塔顶B点仰角为30°,则塔AB高30米.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若α为第二象限角,则$\frac{{{{[{sin({180°-α})+cos({α-360°})}]}^2}}}{{tan({180°+α})}}$=$\frac{cosα(1+2sinαcosα)}{sinα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设扇形AOB的周长为8 cm,若这个扇形的面积为4 cm2,则圆心角的弧度数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数$y=\frac{sinx-1}{sinx+2}$的值域是[-2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\sqrt{3}{cos^2}x+sinxcosx$,
(1)若$f(a)=\frac{{1+\sqrt{3}}}{2}$,求a;
(2)如果关于x的方程|f(x)|=m在区间(0,π)上有两个不同的实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=$2\sqrt{2}$.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角B-PC-D的余弦值;
(Ⅲ)求以C为顶点,△PBD为底面的棱锥C-PBD的高.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知2x+3y=6,则4x+8y的最小值为16.

查看答案和解析>>

同步练习册答案