精英家教网 > 高中数学 > 题目详情
7.设扇形AOB的周长为8 cm,若这个扇形的面积为4 cm2,则圆心角的弧度数为2.

分析 设扇形的半径为r,圆心角的弧度数为α,
根据扇形的周长与面积列出方程组,即可求出α的值.

解答 解:设扇形的半径为r,圆心角的弧度数为α,
则扇形的周长为l=α•r+2r=8①,
扇形的面积为S=$\frac{1}{2}$lr=$\frac{1}{2}$α•r2=4②,
由①②解得α=2,r=2;
∴圆心角的弧度数为2.
故答案为:2.

点评 本题考查了扇形面积与扇形弧长公式的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为${P^'}(\frac{y}{{{x^2}+{y^2}}},\frac{-x}{{{x^2}+{y^2}}})$;当P是原点时,定义P的“伴随点”为它自身,平面曲线C上所有点的“伴随点”所构成的曲线C′定义为曲线C的“伴随曲线”,现有下列命题:
①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A;
②若曲线C关于x轴对称,则其“伴随曲线”C′关于y轴对称;
③单位圆的“伴随曲线”是它自身;
④一条直线的“伴随曲线”是一条直线.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知两点A(6,5)为圆心,$\sqrt{10}$为半径的圆的标准方程为(  )
A.(x-6)2+(y-5)2=10B.(x+6)2+(y+5)2=10C.(x-5)2+(y-6)2=$\sqrt{10}$D.(x+5)2+(y+6)2=$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知α是第三象限角,化简:$\frac{{cos({\frac{π}{2}+α})cos({2π-α})tan({-α+\frac{3π}{2}})}}{{cot({-α-π})sin({-π-α})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=loga(sinx+cosx),(0<a<1)的单调增区间为[2kπ+$\frac{π}{4}$,2kπ+$\frac{3π}{4}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若半径为2的圆心角所对的弧长为4 cm,则这个圆心角大小为2.(用弧度制表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.三角形的三条高的长度分别为$\frac{1}{13}$,$\frac{1}{10}$,$\frac{1}{5}$,则此三角形的形状是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,y=f(x).
(1)求证:tan(α+β)=2tanα;
(2)求f(x)的解析式;
(3)若角α是一个三角形的最小内角,试求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算:
(1)${(2\frac{3}{5})^0}+{2^{-2}}•{(2\frac{1}{4})^{-\frac{1}{2}}}+{(\frac{25}{36})^{0.5}}+\sqrt{{{(-2)}^2}}$
(2)$\frac{1}{2}lg\frac{32}{49}-\frac{4}{3}lg\sqrt{8}+lg\sqrt{245}+{2^{1+{{log}_2}3}}$.

查看答案和解析>>

同步练习册答案