【题目】在平面直角坐标系中,
为坐标原点,
、
是双曲线
上的两个动点,动点
满足
,直线
与直线
斜率之积为2,已知平面内存在两定点
、
,使得
为定值,则该定值为________
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
,以平面直角坐标系
的原点
为极点,
轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线
.
(1)将曲线
上的所有点的横坐标、纵坐标分别伸长为原来的
倍、2倍后得到曲线
.试写出直线
的直角坐标方程和曲线
的参数方程;
(2)在曲线
上求一点
,使点
到直线
的距离最大,并求出此最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,
轴正半轴为极轴,建立极坐标系,点
的极坐标为
,直线
的极坐标方程为
,且
过点
,曲线
的参考方程为
(
为参数).
(1)求曲线
上的点到直线
的距离的最大值与最小值;
(2)过点
与直线
平行的直线
与曲
线交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),在以原点
为极点,
轴正半轴为极轴的极坐标系中,圆
的方程为
.
(1)写出直线
的普通方程和圆
的直角坐标方程;
(2)设点
,直线
与圆
相交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是边长为
的正方形,
平面
,
,
,
与平面
所成角为
.
(Ⅰ)求证:
平面
.
(Ⅱ)求二面角
的余弦值.
(Ⅲ)设点
是线段
上一个动点,试确定点
的位置,使得
平面
,并证明你的结论.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线
的焦点为
,准线为
,点
在抛物线
上,已知以点
为圆心,
为半径的圆
交
于
两点.
(Ⅰ)若
,
的面积为4,求抛物线
的方程;
(Ⅱ)若
三点在同一条直线
上,直线
与
平行,且
与抛物线
只有一个公共点,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com