【题目】设抛物线
的焦点为
,准线为
,点
在抛物线
上,已知以点
为圆心,
为半径的圆
交
于
两点.
(Ⅰ)若
,
的面积为4,求抛物线
的方程;
(Ⅱ)若
三点在同一条直线
上,直线
与
平行,且
与抛物线
只有一个公共点,求直线
的方程.
【答案】(Ⅰ)
(Ⅱ)
,
.
【解析】试题分析:
(Ⅰ)由题意结合抛物线的对称性可知
是等腰三角形,设准线与
轴交于点
,结合抛物线的性质可得
,求解关于实数p的方程可得抛物线方程为
;
(Ⅱ)由对称性不妨设
,则
,结合中点坐标公式有B
,由抛物线准线方程的性质有
,则A
,
,结合导函数的性质可得切点坐标为
,则直线
的方程为
,
.
试题解析:
(Ⅰ)由对称性知,
是等腰三角形.
∵
,点
到准线的距离为
,设准线与
轴交于点
,
即
,
,
∴
.
∴抛物线方程为
;
(Ⅱ)由对称性不妨设
,则
.
∵点
关于点
对称,
∴
点的坐标为
.
∵
点在准线上,
∴
.
∴
.
∴
点坐标为
.
∴
.
又∵直线
与直线
平行,
∴
.
由已知直线
与抛物线相切,设切点为
,
∴
.
∴
.
∴切点
.
∴直线
的方程为
,即
.
由对称性可知,直线
有两条,分别为
,
.
科目:高中数学 来源: 题型:
【题目】已知函数
有极值,且在
处的切线与直线
垂直.
(1)求实数
的取值范围;
(2)是否存在实数
,使得函数
的极小值为
.若存在,求出实数
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,
为坐标原点,
、
是双曲线
上的两个动点,动点
满足
,直线
与直线
斜率之积为2,已知平面内存在两定点
、
,使得
为定值,则该定值为________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定圆
,定直线
,过
的一条动直线
与直线
相交于
,与圆
相交于
,
两点,
是
中点.
(Ⅰ)当
与
垂直时,求证:
过圆心
.
(Ⅱ)当
,求直线
的方程.
(Ⅲ)设
,试问
是否为定值,若为定值,请求出
的值;若不为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】老师在四个不同的盒子里面放了4张不同的扑克牌,分别是红桃
,梅花
,方片
以及黑桃
,让明、小红、小张、小李四个人进行猜测:
小明说:第1个盒子里面放的是梅花
,第3个盒子里面放的是方片
;
小红说:第2个盒子里面饭的是梅花
,第3个盒子里放的是黑桃
;
小张说:第4个盒子里面放的是黑桃
,第2个盒子里面放的是方片
;
小李说:第4个盒子里面放的是红桃
,第3个盒子里面放的是方片
;
老师说:“小明、小红、小张、小李,你们都只说对了一半.”则可以推测,第4个盒子里装的是( )
A. 红桃
或黑桃
B. 红桃
或梅花![]()
C. 黑桃
或方片
D. 黑桃
或梅花![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于各项均为整数的数列
,如果满足
(
)为完全平方数,则称数列
具有“
性质”;不论数列
是否具有“
性质”,如果存在与
不是同一数列的
,且
同时满足下面两个条件:①
是
的一个排列;②数列
具有“
性质”,则称数列
具有“变换
性质”.
(Ⅰ)设数列
的前
项和
,证明数列
具有“
性质”;
(Ⅱ)试判断数列
和数列
是否具有“变换
性质”,具有此性质的数列请写出相应的数列
,不具此性质的说明理由;
(Ⅲ)对于有限项数列
,某人已经验证当
(
)时,数列
具有“变换
性质”,试证明:当
时,数列
也具有“变换
性质”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市一次全市高中男生身高统计调查数据显示:全市
名男生的身高服从正态分布
.现从某学校高三年级男生中随机抽取
名测量身高,测量发现被测学生身高全部介于
和
之间,将测量结果按如下方式分组:
,
,…,
,得到的频率分布直方图如图所示.
![]()
(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;
(Ⅱ)求这
名男生身高在
以上(含
)的人数;
(Ⅲ)在这
名男生身高在
以上(含
)的人中任意抽取
人,该
人中身高排名(从高到低)在全市前
名的人数记力
,求
的数学期望.
参考数据:若
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的一个顶点为A(2,0),离心率为
.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为
时,求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com