精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
m2
+y2=1(常数m>1),点P是C上的动点,M是右顶点,定点A的坐标为(2,0).
(1)若M与A重合,求C的焦点坐标;
(2)若m=3,求|PA|的最大值与最小值;
(3)若|PA|的最小值为|MA|,求m的取值范围.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)根据题意,若M与A重合,即椭圆的右顶点的坐标为(2,0),可得a,即可求出C的焦点坐标;
(2)若m=3,则椭圆的方程为
x2
9
+y2=1,变形可得y2=1-
x2
9
,代入,利用配方法求|PA|的最大值与最小值;
(3)当x=m时,|PA|取得最小值,且
m2-1
m2
>0,则
2m2
m2-1
≥m,且m>1,即可求m的取值范围.
解答: 解:(1)根据题意,若M与A重合,即椭圆的右顶点的坐标为(2,0);
则a=2;椭圆的焦点在x轴上,则c=
3

则椭圆焦点的坐标为(
3
,0),(-
3
,0);
(2)若m=3,则椭圆的方程为
x2
9
+y2=1,变形可得y2=1-
x2
9

|PA|2=(x-2)2+y2=x2-4x+4+y2=
8x2
9
-4x+5;
又由-3≤x≤3,
根据二次函数的性质,分析可得,
x=-3时,|PA|2=
8x2
9
-4x+5取得最大值,且最大值为25;
x=
9
4
时,|PA|2=
8x2
9
-4x+5取得最小值,且最小值为
1
2

则|PA|的最大值为5,|PA|最小值为
2
2

(3)设动点P(x,y),
则|PA|2=(x-2)2+y2=x2-4x+4+y2=
m2-1
m2
(x-
2m2
m2-1
2+
4m2
m2-1
+5,且-m≤x≤m;
当x=m时,|PA|取得最小值,且
m2-1
m2
>0,
2m2
m2-1
≥m,且m>1;
解得1<m≤1+
2
点评:本题考查椭圆的方程与性质,考查二次函数的性质,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
4x
3x2+4
,x∈[0,2],求解f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设公差d=1,a2是a1与a4的等比中项,则a1=(  )
A、2B、1C、2或1D、1或-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差为2的等差数列,数列{bn}是首项为10的等比数列,记复数zn=an+bni,且z1-2z2=-5.
(1)求数列{zn}的前项和Sn
(2)求|zn|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为曲线y=lnx上一点,则点P到直线y=x距离最小值为(  )
A、1
B、
2
2
C、
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆x2+my2=1的焦点在x轴上,且离心率为
3
2
,则它的长半轴长为
 
,短轴为
 
;焦点的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

球面上有三个点A、B、C.A、B,A、C间的球面距离等于大圆周长的
1
6
.B和C间的球面距离等于大圆周长的
1
4
.如果球的半径是R,那么球心到截面ABC的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足
AB
=
a
+2
b
BC
=-5
a
+6
b
CD
=7
a
-2
b
,则一定共线的三点是(  )
A、A、B、D
B、A、B、C
C、B、C、D
D、A、C、D

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题P:|m|≤1,命题q:方程
x2
m-2
+
y2
m
=1
表示的曲线是双曲线,若命题p,q中有且只有一个是正确的,求实数m的取值范围.

查看答案和解析>>

同步练习册答案