分析 由an+2=f(an)=$\frac{3}{{a}_{n}+1}$,a1=1,可得a3=$\frac{3}{1+1}$=$\frac{3}{2}$,同理可得:a5,a7,a9.由a2016=a2018=a>0,可得$a=\frac{3}{a+1}$,解得a.可得a2016=a2018=…=a10,即可得出.
解答 解:∵an+2=f(an)=$\frac{3}{{a}_{n}+1}$,
∵a1=1,∴a3=$\frac{3}{1+1}$=$\frac{3}{2}$,同理可得:a5=$\frac{6}{5}$,a7=$\frac{15}{11}$,a9=$\frac{33}{26}$.
∵a2016=a2018=a>0,∴$a=\frac{3}{a+1}$,化为a2+a-3=0,解得a=$\frac{\sqrt{13}-1}{2}$.
∴a2016=a2018=…=a10=$\frac{\sqrt{13}-1}{2}$.
∴a9+a10=$\frac{33}{26}$+$\frac{\sqrt{13}-1}{2}$=$\frac{10}{13}+\frac{{\sqrt{13}}}{2}$.
故答案为:$\frac{10}{13}+\frac{{\sqrt{13}}}{2}$.
点评 本题考查了数列的周期性、数列递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{2}{13}$$\sqrt{13}$ | C. | $\frac{5}{26}$$\sqrt{13}$ | D. | $\frac{7}{20}$$\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{2}{3}$ | B. | $\frac{2}{3}$ | C. | $-\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (1,4) | C. | [2,4) | D. | (0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2=16y | B. | y2=-16x | C. | y2=16x | D. | x2=-16y |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com