精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=ex-1-$\frac{ax}{x-1}$.
(Ⅰ)若曲线y=f(x)在(2,f(2))处的切线过(0,-1),求a的值;
(Ⅱ)求证:当a≤-1时,不等式f(x)•lnx≥0在(0,1)∪(1,+∞)上恒成立.

分析 (Ⅰ)将x=2代入原函数和导函数,求出切点坐标和切线斜率,得到切线的点斜式方程,将(0,-1)代入,可求a的值;
(Ⅱ)若证:当a≤-1时,不等式f(x)•lnx≥0在(0,1)∪(1,+∞)上恒成立.只需证:(x-1)(ex-1)-ax≥0在(0,+∞)恒成立,设g(x)=(x-1)(ex-1)-ax,x∈[0,+∞),利用导数法求其最值后,可得结论.

解答 解:(Ⅰ)解由x-1≠0得:函数f(x)=ex-1-$\frac{ax}{x-1}$的定义域为x∈(-∞,1)∪(1,+∞),
f(2)=e2-1-2a,$f'(x)={e^x}-\frac{{a({x-1})-ax}}{{{{({x-1})}^2}}}={e^x}+\frac{a}{{{{({x-1})}^2}}}$,
∴f'(2)=e2+a,
∴曲线y=f(x)在(2,f(2))处的切线y-(e2-1-2a)=(e2+a)(x-2)
将(0,-1)代入,得-1-(e2-1-2a)=-2e2-2a,
解得:$a=-\frac{{e}^{2}}{4}$
证明:(Ⅱ)$f(x)•lnx=({{e^x}-1-\frac{ax}{x-1}})•lnx$
若证:当a≤-1时,不等式f(x)•lnx≥0在(0,1)∪(1,+∞)上恒成立.
只需证:$\frac{1}{x-1}•lnx•[{({x-1})({{e^x}-1})-ax}]≥0$在(0,1)∪(1,+∞)上恒成立,
∵x∈(0,1)∪(1,+∞)时,$\frac{1}{x-1}•lnx>0$恒成立,
∴只需证:(x-1)(ex-1)-ax≥0在(0,+∞)恒成立
设g(x)=(x-1)(ex-1)-ax,x∈[0,+∞)
∵g(0)=0恒成立
∴只需证:g(x)≥0在[0,+∞)恒成立
∵g'(x)=x•ex-1-a,
g''(x)=(x+1)•ex>0恒成立,
∴g'(x)单调递增,
∴g'(x)≥g'(0)=-1-a≥0
∴g(x)单调递增,
∴g(x)≥g(0)=0
∴g(x)≥0在[0,+∞)恒成立
即$f(x)•lnx=\frac{1}{x-1}•lnx•g(x)≥0$在(0,1)∪(1,+∞)上恒成立.

点评 本题考查的知识点是利用导数求闭区间上函数的最值,利用导数研究曲线上过某点的切线方程,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数f(x)=(m+1)x2-2(m+1)x-1的图象与x轴有且仅有一个交点,则实数m的值为(  )
A.-1或-2B.-1C.-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f'(x)和g'(x)分别是函数f(x)和g(x)的导函数,若f'(x)•g'(x)≤0在区间I上恒成立,则称函数f(x)和g(x)在区间I上单调性相反.若函数f(x)=$\frac{1}{3}$x3-3ax与函数g(x)=x2+bx在开区间(a,b)(a>0)上单调性相反,则b-a的最大值等于$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,在区间(1,+∞)上为减函数的是(  )
A.y=$\frac{1}{x-1}$B.y=2x-1C.y=$\sqrt{x-1}$D.y=ln(x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx-$\frac{a(x-1)}{x}$(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求证:?x∈(1,2),不等式$\frac{1}{lnx}$-$\frac{1}{x-1}$<$\frac{1}{2}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex-ax-1(a∈R),函数g(x)=ln(ex-1)-lnx.
(1)求出f(x)的单调区间;
(2)若x∈(0,+∞)时,不等式f(g(x))<f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知cosα=$\frac{3}{5}$,cos(α+β)=$\frac{8}{17}$,α,β均为锐角,则cosβ=$\frac{84}{85}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,已知四边形ABCD是矩形,M,N分别是AD,BC的中点,P是CD上一点,Q是AB上一点,PM与QN交于R,A是原点,B(2,0),C(2,1),D(0,1),P(t,1),Q(t,0),
(1)若$\overrightarrow{MP}⊥\overrightarrow{NP}$,求t的值;
(2)求证:$\overrightarrow{AR}=f(t)\overrightarrow{AC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图ABCD-A1B1C1D1是正方体,B1E1=D1F1=$\frac{{A}_{1}{B}_{1}}{4}$,则BE1与DF1所成角的余弦值是$\frac{15}{17}$.

查看答案和解析>>

同步练习册答案