精英家教网 > 高中数学 > 题目详情
14.求证:1+$\frac{2sinαcosα}{1+sinα+cosα}$=$\frac{si{n}^{2}α}{sinα-cosα}$-$\frac{sinα+cosα}{ta{n}^{2}α-1}$.

分析 根据同角的三角函数基本关系,分别化简等式的左边与右边,看左右是否相等即可.

解答 证明:左边=1+$\frac{2sinαcosα}{1+sinα+cosα}$
=$\frac{1+sinα+cosα+2sinαcosα}{1+sinα+cosα}$
=$\frac{{(sinα+cosα)}^{2}+(sinα+cosα)}{1+sinα+cosα}$
=$\frac{(sinα+cosα)(1+sinα+cosα)}{1+sinα+cosα}$
=sinα+cosα,
右边=$\frac{si{n}^{2}α}{sinα-cosα}$-$\frac{sinα+cosα}{ta{n}^{2}α-1}$
=$\frac{{sin}^{2}α}{sinα-cosα}$-$\frac{(sinα+cosα{)cos}^{2}α}{{sin}^{2}α{-cos}^{2}α}$
=$\frac{{sin}^{2}α(sinα+cosα)}{(sinα-cosα)(sinα+cosα)}$-$\frac{(sinα+cosα{)cos}^{2}α}{{sin}^{2}α{-cos}^{2}α}$
=$\frac{(sinα+cosα){(sin}^{2}α{-cos}^{2}α)}{{sin}^{2}α{-cos}^{2}α}$
=sinα+cosα;
∴左边=右边,等式成立.

点评 本题露出了三角函数恒等式的证明问题,解题时应灵活应用同角的三角函数基本关系,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若一圆锥的侧面积为15π,体积是12π,则该圆锥的底面半径等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在一次购物抽奖活动中,假设某10张券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:
(1)该顾客中奖的概率;
(2)该顾客获得的奖品总价值ξ(元)的概率分布,并求出P(5≤ξ≤25)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z1,z2,则下列说法中正确的是(  )
A.|z1|+|z2|>|z1+z2|B.|z1|-|z2|>|z1-z2|C.|z1|+|z2|≥|z1+z2|D.|z1|-|z2|≥|z1-z2|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.二项式(x-2y)7的展开式中,所有项系数绝对值之和等于37

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某人上午7时乘摩托艇以匀速v n mile/h(4 n mile/h≤t≤20 n mile/h)从A港出发到距50 n mile的B港,然后乘汽车以匀速ω km/h(30 km/h≤ω≤100 km/h)自B港向距300km的C市驶去,应该在同一天下午4点至9点到达C市.设汽车、摩托艇所需的时间分别是x h和y h,所需要的经费P=100+3•(5-x)+2•(8-y)元,求v、ω分别是多少时走的最经济?此时需要花费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某工厂实施煤改电工程防治雾霾,欲拆除高为AB的烟囱,测绘人员取与烟囱底部B在同一水平面内的两个观测点C,D,测得∠BCD=75°,∠BDC=60°,CD=40米,并在点C处的正上方E处观测顶部A的仰角为30°,且CE=1米,则烟囱高AB=1+20$\sqrt{2}$米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知点(x,y)是区域$\left\{{\begin{array}{l}{x+2y≤2n}\\{x≥0}\\{y≥0}\end{array}}\right.$,(n∈N*)内的点,目标函数z=x+y,z的最大值记作zn.若数列{an}的前n项和为Sn,a1=1,且点(Sn,an)在直线zn=x+y上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.命题“如果x∈A或x∈B,那么x∈(A∪B)”的逆否命题是“如果x∉(A∪B),那么x∉A且x∉B”.

查看答案和解析>>

同步练习册答案