【题目】如图,在三棱锥A-BCD中,
,点E为棱CD上的一点,且
.
![]()
(1)求证:平面
平面BCD;
(2)若三棱锥A-BCD的体积为
,求三棱锥E-ABD的高.
科目:高中数学 来源: 题型:
【题目】已知正方体
,过对角线
作平面
交棱
于点E,交棱
于点F,则:
①平面
分正方体所得两部分的体积相等;
②四边形
一定是平行四边形;
③平面
与平面
不可能垂直;
④四边形
的面积有最大值.
其中所有正确结论的序号为( )
A.①④B.②③C.①②④D.①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某乡镇为了打赢脱贫攻坚战,决定盘活贫困村的各项经济发展要素,实施了产业、创业、就业“三业并举”工程.在实施过程中,引导某贫困村农户因地制宜开展种植某经济作物.该类经济作物的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为
,其质量指标的等级划分如下表1:
表1
质量指标值 | 产品等级 |
| 优秀品 |
| 良好品 |
| 合格品 |
| 不合格品 |
为了解该类经济作物在当地的种植效益,当地引种了甲、乙两个品种.并随机抽取了甲、乙两个品种的各
件产品,测量了每件产品的质量指标值,得到下面产品质量指标值频率分布直方图(图1和图2).
![]()
(1)若将频率视为概率,从乙品种产品中有放回地随机抽取
件,记“抽出乙品种产品中至少
件良好品或以上”为事件
,求事件
发生的概率
;(结果保留小数点后
位)(参考数值:
,
)
(2)若甲、乙两个品种的销售利润率
与质量指标值
满足表2
表2
质量指标值 |
|
|
|
|
销售利润率 |
|
|
|
|
其中
,试分析,从长期来看,种植甲、乙哪个品种的平均利润率较大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(a为常数)有两个极值点.
(1)求实数a的取值范围;
(2)设f(x)的两个极值点分别为x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产的产品中分正品与次品,正品重
,次品重
,现有5袋产品(每袋装有10个产品),已知其中有且只有一袋次品(10个产品均为次品)如果将5袋产品以1~5编号,第
袋取出
个产品(
),并将取出的产品一起用秤(可以称出物体重量的工具)称出其重量
,若次品所在的袋子的编号是2,此时的重量
_________
;若次品所在的袋子的编号是
,此时的重量
_______
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
三个班共有
名学生,为调查他们的上网情况,通过分层抽样获得了部分学生一周的上网时长,数据如下表(单位:小时):
|
|
|
|
|
|
(1)试估计
班的学生人数;
(2)从这120名学生中任选1名学生,估计这名学生一周上网时长超过15小时的概率;
(3)从A班抽出的6名学生中随机选取2人,从B班抽出的7名学生中随机选取1人,求这3人中恰有2人一周上网时长超过15小时的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,已知棱
,
,
两两垂直,长度分别为1,2,2.若
(
),且向量
与
夹角的余弦值为
.
![]()
(1)求
的值;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,抛物线C:y2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为( )
A. 4B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com