分析 (Ⅰ)由二倍角公式化简已知等式可得$\sqrt{5}$sinB=4sinC,由A+$\frac{3B}{2}$=π,及三角形内角和定理可求B=2C,
可求cosC,进而由二倍角公式即可计算得解cosB的值.
(Ⅱ)由(Ⅰ)及正弦定理可求$\sqrt{5}$b=4c,进而可求b=4$\sqrt{5}$,由余弦定理可得:a2-6a-55=0,解得a的值,
可求CD,利用同角三角函数基本关系式求得sinC,利用三角形面积公式可求S△ADC.
解答 (本题满分为12分)
解:(Ⅰ)∵$\sqrt{5}$(1-cos2B)=8sinBsinC,
∴2$\sqrt{5}$sin2B=8sinBsinC,
∴由sinB≠0,可得:$\sqrt{5}$sinB=4sinC,…2分
∵A+$\frac{3B}{2}$=π,
∴C=$\frac{B}{2}$,即B=2C,
∴sinB=sin2C=2sinCcosC,可得:cosC=$\frac{sinB}{2sinC}$=$\frac{2\sqrt{5}}{5}$,…4分
∴cosB=cos2C=2cos2C-1=$\frac{3}{5}$…6分
(Ⅱ)由(Ⅰ)可得$\sqrt{5}$sinB=4sinC,可得:$\sqrt{5}$b=4c,可得b=4$\sqrt{5}$,…8分
由余弦定理b2=a2+c2-2accosB,可得:a2-6a-55=0,解得:a=11或a=-5(舍去),…10分
∴CD=5,
又∵cosC=$\frac{2\sqrt{5}}{5}$,
∴sinC=$\frac{\sqrt{5}}{5}$,…11分
∴S△ADC=$\frac{1}{2}$•DC•AC•sinC=$\frac{1}{2}×5×4\sqrt{5}×\frac{\sqrt{5}}{5}$=10.…12分
点评 本题主要考查了二倍角公式,三角形内角和定理,正弦定理,余弦定理,三角形面积公式在解三角形中的应用,考查了推理论证能力以及运算求解能力,属于中档题.解三角形的问题常与三角函数恒等变换进行交汇考查,此时要注意根据题设条件寻找合理的公式,此外,在求解三角形中的边或角时,要注意将这些量安置在相关的三角形中,进而转化成解三角形中常见的四种模型求解.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\frac{{\sqrt{21}}}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{{\sqrt{7}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com