精英家教网 > 高中数学 > 题目详情
9.在△ABC中,角A、B、C所对打的边分别为a、b、c,面积S=$\frac{1}{4}({a^2}+{b^2}-{c^2})$
(1)求角C;
(2)若b=2,c=$\sqrt{6}$,求cosB的值.

分析 (1):由余弦定理及已知得$\frac{1}{2}$absinC=$\frac{1}{4}$.2abcosC,即 tanC=1,可得C.
(2):由正弦定理得$\frac{2}{sinB}$=$\frac{{\sqrt{6}}}{{sin{45}^0}}$,得sinB,cosB.

解答 解:(1)由余弦定理及已知得$\frac{1}{2}$absinC=$\frac{1}{4}$.2abcosC
即 tanC=1------------------------------------------------------------------------(4分)
所以C=45°------------------------------------------------------------------------(5分)
(2)由正弦定理得$\frac{2}{sinB}$=$\frac{{\sqrt{6}}}{{sin{45}^0}}$-------------------------------------------------------(8分)
所以sinB=$\frac{{\sqrt{3}}}{3}$--------------------------------------------------------------------(9分)
因为b<c,所以B<C=45°------------------------------------------------(10分)
所以cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{{\sqrt{6}}}{3}$--------------------------------------------(12分)

点评 本题考查考查正弦定理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.某小区现有住房的面积为a平方米,在改造过程中政府决定每年拆除b平方米旧住房,同时按当店住房面积的10%建设新住房,则n年后该小区的住房面积为(  )
A.a•1.1n-nbB.a•1.1n-10b(1.1n-1)
C.n(1.1a-1)D.(a-b)1.1n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将自然数0,1,2,…按照如下形式进行摆列:

根据以上规律判定,从2016到2018的箭头方向是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在(a-b)20的二项展开式中,二项式系数与第7项系数相同的项是(  )
A.第15项B.第16项C.第17项D.第18项

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在同一平面直角坐标系中,经过伸缩变换$\left\{\begin{array}{l}{x′=5x}\\{y′=3y}\end{array}\right.$后,曲线C变为曲线x′2+4y′2=1,则曲线C的方程为(  )
A.25x2+36y2=1B.9x2+100y2=1C.10x+24y=1D.$\frac{2}{25}$x2+$\frac{8}{9}$y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C经过A(3,3),B(2,4)两点,且圆心C在直线y=3x-5上.
(1)求圆C的标准方程;
(2)设P(-m,0),Q(m,0)(m>0),若圆C上存在点M,使得点M也在以PQ为直径的圆上,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法正确的是(  )
A.任何两种变量都具有相关关系
B.某商品的生产量与该商品的销售价格之间是一种非确定性的关系
C.农作物的产量与施肥之间是一种确定性关系
D.球的体积与该球的半径具有相关关系

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=ln(x-1)+ax2+x+1,g(x)=(x-1)ex+ax2.  
(1)当a=1时,求函数f(x)在点(2,f(2))处的切线方程;
(2)若函数g(x)有两个零点,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等比数列{an}中,a3,a15是方程x2-6x+18=0的根,则$\frac{{a}_{1}{a}_{17}}{{a}_{9}}$的值为(  )
A.2$\sqrt{2}$B.4C.±2$\sqrt{2}$D.±4

查看答案和解析>>

同步练习册答案