精英家教网 > 高中数学 > 题目详情
18.设函数f(x)=ln(x-1)+ax2+x+1,g(x)=(x-1)ex+ax2.  
(1)当a=1时,求函数f(x)在点(2,f(2))处的切线方程;
(2)若函数g(x)有两个零点,试求a的取值范围.

分析 (1)求出函数的导数,计算f(2),f′(2)的值,求出切线方程即可;
(2)求出函数g(x)的导数,通过讨论a的范围,判断函数g(x)的单调性,结合函数零点的个数确定a的范围即可.

解答 解:(1)f(x)=ln(x-1)+x2+x+1的导数为
f′(x)=$\frac{1}{x-1}$+2x+1,
可得f(x)在点(2,f(2))处的切线斜率为1+4+1=6,
切点为(2,7),
即有f(x)在点(2,f(2))处的切线方程为y-7=6(x-2),
即为6x-y-5=0;
(2)函数g(x)的定义域为R,由已知得g'(x)=x(ex+2a).
①当a=0时,函数g(x)=(x-1)ex只有一个零点;
②当a>0,因为ex+2a>0,
当x∈(-∞,0)时,g'(x)<0;当x∈(0,+∞)时,g'(x)>0.
所以函数g(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
又g(0)=-1,g(1)=a,
因为x<0,所以x-1<0,ex<1,所以ex(x-1)>x-1,所以g(x)>ax2+x-1
取x0=$\frac{-1-\sqrt{1+4a}}{2a}$,显然x0<0且g(x0)>0,
所以g(0)g(1)<0,g(x0)g(0)<0.
由零点存在性定理及函数的单调性知,函数有两个零点.
③当a<0时,由g'(x)=x(ex+2a)=0,得x=0,或x=ln(-2a).
ⅰ) 当a<-$\frac{1}{2}$,则ln(-2a)>0.
当x变化时,g'(x),g(x)变化情况如下表:

x(-∞,0)0(0,ln(-2a))ln(-2a)(ln(-2a),+∞)
g'(x)+0-0+
g(x)-1
注意到g(0)=-1,所以函数g(x)至多有一个零点,不符合题意.
ⅱ) 当a=-$\frac{1}{2}$,则ln(-2a)=0,g(x)在(-∞,+∞)单调递增,函数g(x)至多有一个零点,不符合题意.
ⅱⅰ) 若a>-$\frac{1}{2}$,则ln(-2a)≤0.
当x变化时,g'(x),g(x)变化情况如下表:
x(-∞,ln(-2a))ln(-2a)(ln(-2a),0)0(0,+∞)
g'(x)+0-0+
g(x)-1
注意到当x<0,a<0时,g(x)=(x-1)ex+ax2<0,g(0)=-1,所以函数g(x)至多有一个零点,不符合题意.
综上,a的取值范围是(0,+∞).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.参数方程$\left\{\begin{array}{l}x=cos2θ\\ y=sin2θ\end{array}$(θ为参数)表示的曲线是(  )
A.直线B.C.线段D.射线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A、B、C所对打的边分别为a、b、c,面积S=$\frac{1}{4}({a^2}+{b^2}-{c^2})$
(1)求角C;
(2)若b=2,c=$\sqrt{6}$,求cosB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在微信群中抢红包已成为一种娱乐,已知某商业调查公司对此进行了问卷调查,其中男性500人,女性400人,为了了解喜欢抢红包是否与性别有关,现采用分层抽样的方法从中抽取了45人的调查结果,并作出频数统计表如下:
表1:男性
等级喜欢一般不喜欢
频数15x5
表2:女性
等级喜欢一般不喜欢
频数153y
(Ⅰ)由表中统计数据填写下面2×2列联表,并判断是否有90%的把握认为“喜欢抢红包与性别有关”;
男性女性总计
喜欢15          15    30     
非喜欢10515
总计252045
参考公式:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
临界值表:
P(K2≥k00.100.050.01
k02.7063.8416.635
(Ⅱ)从表1“一般”与表2“不喜欢”的人中随机选取2人进行交谈,求所选2人中至少有1人是“不喜欢”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$f(x)=\frac{1}{3}{x^3}-4x+4$在[0,3]上的最值是(  )
A.最大值是4,最小值是$-\frac{4}{3}$B.最大值是2,最小值是$-\frac{4}{3}$
C.最大值是4,最小值是$-\frac{1}{3}$D.最大值是2,最小值是$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a1=1,且${a_{n+1}}=\frac{a_n}{{1+{a_n}}}$,n∈N*,①求a2,a3,a4并猜想数列的通项公式,②试证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对于定义在R上的可导函数f(x),命题p:f(x)在x=x0处导数值为0,命题q:函数f(x)在x=x0处取得极值,则命题p是命题q成立的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用数学归纳法证明:(n+1)(n+2)(n+3)…(n+n)=2n•1•3…(2n-1)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{k}{2}{x^2}+\frac{x+1}{e^x}$-1(k为常数,k∈R).
(1)讨论函数f(x)的单调区间;
(2)当k=$\frac{1}{8}$时,若函数f(x)在(-∞,en](n∈Z,e是自然对数的底数)上有两个零点,求n的最小值.

查看答案和解析>>

同步练习册答案