分析 (1)求出函数的导数,计算f(2),f′(2)的值,求出切线方程即可;
(2)求出函数g(x)的导数,通过讨论a的范围,判断函数g(x)的单调性,结合函数零点的个数确定a的范围即可.
解答 解:(1)f(x)=ln(x-1)+x2+x+1的导数为
f′(x)=$\frac{1}{x-1}$+2x+1,
可得f(x)在点(2,f(2))处的切线斜率为1+4+1=6,
切点为(2,7),
即有f(x)在点(2,f(2))处的切线方程为y-7=6(x-2),
即为6x-y-5=0;
(2)函数g(x)的定义域为R,由已知得g'(x)=x(ex+2a).
①当a=0时,函数g(x)=(x-1)ex只有一个零点;
②当a>0,因为ex+2a>0,
当x∈(-∞,0)时,g'(x)<0;当x∈(0,+∞)时,g'(x)>0.
所以函数g(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
又g(0)=-1,g(1)=a,
因为x<0,所以x-1<0,ex<1,所以ex(x-1)>x-1,所以g(x)>ax2+x-1
取x0=$\frac{-1-\sqrt{1+4a}}{2a}$,显然x0<0且g(x0)>0,
所以g(0)g(1)<0,g(x0)g(0)<0.
由零点存在性定理及函数的单调性知,函数有两个零点.
③当a<0时,由g'(x)=x(ex+2a)=0,得x=0,或x=ln(-2a).
ⅰ) 当a<-$\frac{1}{2}$,则ln(-2a)>0.
当x变化时,g'(x),g(x)变化情况如下表:
| x | (-∞,0) | 0 | (0,ln(-2a)) | ln(-2a) | (ln(-2a),+∞) |
| g'(x) | + | 0 | - | 0 | + |
| g(x) | ↗ | -1 | ↘ | ↗ |
| x | (-∞,ln(-2a)) | ln(-2a) | (ln(-2a),0) | 0 | (0,+∞) |
| g'(x) | + | 0 | - | 0 | + |
| g(x) | ↗ | ↘ | -1 | ↗ |
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道综合题.
科目:高中数学 来源: 题型:选择题
| A. | 直线 | B. | 圆 | C. | 线段 | D. | 射线 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 等级 | 喜欢 | 一般 | 不喜欢 |
| 频数 | 15 | x | 5 |
| 等级 | 喜欢 | 一般 | 不喜欢 |
| 频数 | 15 | 3 | y |
| 男性 | 女性 | 总计 | |
| 喜欢 | 15 | 15 | 30 |
| 非喜欢 | 10 | 5 | 15 |
| 总计 | 25 | 20 | 45 |
| P(K2≥k0) | 0.10 | 0.05 | 0.01 |
| k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最大值是4,最小值是$-\frac{4}{3}$ | B. | 最大值是2,最小值是$-\frac{4}{3}$ | ||
| C. | 最大值是4,最小值是$-\frac{1}{3}$ | D. | 最大值是2,最小值是$-\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 必要不充分条件 | B. | 充分不必要条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com