精英家教网 > 高中数学 > 题目详情
3.在数列{an}中,a1=1,且${a_{n+1}}=\frac{a_n}{{1+{a_n}}}$,n∈N*,①求a2,a3,a4并猜想数列的通项公式,②试证明你的猜想.

分析 ①利用数列的递推关系式求出数列的前4项,然后猜想数列的通项公式.
②利用递推关系式判断新数列$\{\frac{1}{{a}_{n}}\}$是以1为首项,公差d=1的等差数列,利用等差数列的通项公式求解即可.

解答 解:①∵a1=1,且${a_{n+1}}=\frac{a_n}{{1+{a_n}}}$,n∈N*,∴${a}_{2}=\frac{{a}_{1}}{1+{a}_{1}}$=$\frac{1}{2}$;${a}_{3}=\frac{{a}_{2}}{1+{a}_{2}}$=$\frac{1}{3}$,同理
得:${a}_{4}=\frac{{a}_{3}}{1+{a}_{3}}=\frac{1}{4}$,观察可得,数列的前4项都等于相应序号的倒数,
由此猜想:${a}_{n}=\frac{1}{n}$,n∈N*,------(6分)
②证明如下:∵${a_{n+1}}=\frac{a_n}{{1+{a_n}}}$,∴$\frac{1}{{a}_{n+1}}=\frac{1+{a}_{n}}{{a}_{n}}$=$\frac{1}{{a}_{n}}+1$,
∴$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=1$,∈N*
∴$\{\frac{1}{{a}_{n}}\}$是以$\frac{1}{{a}_{1}}=1$为首项,公差d=1的等差数列,
∴$\frac{1}{{a}_{n}}$=1+(n-1)×1=n,∴an=$\frac{1}{n}$,∈N*.------(12分)

点评 本题考查数列的递推关系式的应用,数列的通项公式的求法,考查转化思想与计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知α是第三象限角且$|{cos\frac{α}{3}}|=-cos\frac{α}{3}$,则$\frac{α}{3}$角是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C经过A(3,3),B(2,4)两点,且圆心C在直线y=3x-5上.
(1)求圆C的标准方程;
(2)设P(-m,0),Q(m,0)(m>0),若圆C上存在点M,使得点M也在以PQ为直径的圆上,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列函数的导数:
(1)y=(x+1)2(x-1); 
(2)y=x2sin x; 
(3)y=$\frac{{e}^{x}+1}{{e}^{x}-1}$
(4)f(x)=$\frac{{e}^{x}}{x-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=ln(x-1)+ax2+x+1,g(x)=(x-1)ex+ax2.  
(1)当a=1时,求函数f(x)在点(2,f(2))处的切线方程;
(2)若函数g(x)有两个零点,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E,F分别是棱BC,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面AEF,则线段AP长度的取值范围是[$\frac{3\sqrt{2}}{4}$,$\frac{\sqrt{5}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出2个球.在摸出的4个球中,若都是红球,则获一等奖;若只有3个红球,则获二等奖;若只有2个红球,则获三等奖;若只有1个红球,则获四等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获一等奖的概率;
(2)求顾客抽奖1次能获二等奖的概率
(3)求顾客抽奖1次能获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC的内角A,B,C所对的边分别为a,b,c,满足ccosB+bcosC=2acosC.
(1)求角C的大小;
(2)若c=2$\sqrt{3},{S_{△ABC}}=2\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出如下命题:
①“m∈(-1,2)”是“方程$\frac{x^2}{m+1}-\frac{y^2}{m-2}=1$为椭圆方程”的充要条件;
②命题“若动点P到两定点F1(-4,0),F2(4,0)的距离之差的绝对值为8,则动点P的轨迹为双曲线”的逆否命题为真命题;
③若p∧q为假命题,则p,q都是假命题;
④已知条件p:{x|x<-3,或x>1},q:x>a.若?p是?q的充分不必要条件,则实数a的取值范围是a≥1;
其中所有正确命题的序号是④.

查看答案和解析>>

同步练习册答案