15£®Ä³É̳¡¾ÙÐÐÓн±´ÙÏú»î¶¯£¬¹Ë¿Í¹ºÂòÒ»¶¨½ð¶îµÄÉÌÆ·ºó¼´¿É³é½±£®Ã¿´Î³é½±¶¼ÊÇ´Ó×°ÓÐ4¸öºìÇò¡¢6¸ö°×ÇòµÄ¼×ÏäºÍ×°ÓÐ5¸öºìÇò¡¢5¸ö°×ÇòµÄÒÒÏäÖУ¬¸÷Ëæ»úÃþ³ö2¸öÇò£®ÔÚÃþ³öµÄ4¸öÇòÖУ¬Èô¶¼ÊǺìÇò£¬Ôò»ñÒ»µÈ½±£»ÈôÖ»ÓÐ3¸öºìÇò£¬Ôò»ñ¶þµÈ½±£»ÈôÖ»ÓÐ2¸öºìÇò£¬Ôò»ñÈýµÈ½±£»ÈôÖ»ÓÐ1¸öºìÇò£¬Ôò»ñËĵȽ±£»ÈôûÓкìÇò£¬Ôò²»»ñ½±£®
£¨1£©Çó¹Ë¿Í³é½±1´ÎÄÜ»ñÒ»µÈ½±µÄ¸ÅÂÊ£»
£¨2£©Çó¹Ë¿Í³é½±1´ÎÄÜ»ñ¶þµÈ½±µÄ¸ÅÂÊ
£¨3£©Çó¹Ë¿Í³é½±1´ÎÄÜ»ñ½±µÄ¸ÅÂÊ£®

·ÖÎö £¨1£©ÀûÓõȿÉÄÜʼþ¸ÅÂʼÆË㹫ʽÄÜÇó³ö¹Ë¿Í³é½±1´ÎÄÜ»ñÒ»µÈ½±µÄ¸ÅÂÊ£®
£¨2£©ÀûÓû¥³âʼþ¸ÅÂʼӷ¨¹«Ê½ÄÜÇó³ö¹Ë¿Í³é½±1´ÎÄÜ»ñ¶þµÈ½±µÄ¸ÅÂÊ£®
£¨3£©ÀûÓõȿÉÄÜʼþ¸ÅÂʼÆË㹫ʽÄÜÇó³ö¹Ë¿Í³é½±1´ÎÄÜ»ñ½±µÄ¸ÅÂÊ£®

½â´ð ½â£º£¨1£©¹Ë¿Í³é½±1´ÎÄÜ»ñÒ»µÈ½±µÄ¸ÅÂÊ£º
${P}_{1}=\frac{{C}_{4}^{2}{C}_{5}^{2}}{{C}_{10}^{2}{C}_{10}^{2}}$=$\frac{4}{135}$£®
£¨2£©¹Ë¿Í³é½±1´ÎÄÜ»ñ¶þµÈ½±µÄ¸ÅÂÊ£º
P2=$\frac{{C}_{4}^{2}{C}_{5}^{3}{C}_{5}^{1}+{C}_{4}^{1}{C}_{6}^{1}{C}_{5}^{2}}{{C}_{10}^{2}{C}_{10}^{2}}$=$\frac{78}{405}$=$\frac{26}{135}$£®
£¨3£©¹Ë¿Í³é½±1´ÎÄÜ»ñ½±µÄ¸ÅÂÊ£º
P3=$\frac{{C}_{6}^{2}{C}_{5}^{2}}{{C}_{10}^{2}{C}_{10}^{2}}$=$\frac{75}{81}$£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµÈ¿ÉÄÜʼþ¸ÅÂʼÆË㹫ʽ¡¢»¥³âʼþ¸ÅÂʼӷ¨¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑ֪ʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}{x-2y+1¡Ý1}\\{x£¼2}\\{x+y-1¡Ý0}\end{array}\right.$£¬z=|2x-2y-1|£¬ÔòzµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[0£¬5£©B£®[0£¬5]C£®[$\frac{5}{3}$£¬5£©D£®[$\frac{5}{3}$£¬5]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÔÚ΢ÐÅȺÖÐÇÀºì°üÒѳÉΪһÖÖÓéÀÖ£¬ÒÑ֪ijÉÌÒµµ÷²é¹«Ë¾¶Ô´Ë½øÐÐÁËÎʾíµ÷²é£¬ÆäÖÐÄÐÐÔ500ÈË£¬Å®ÐÔ400ÈË£¬ÎªÁËÁ˽âϲ»¶ÇÀºì°üÊÇ·ñÓëÐÔ±ðÓйأ¬ÏÖ²ÉÓ÷ֲã³éÑùµÄ·½·¨´ÓÖгéÈ¡ÁË45È˵ĵ÷²é½á¹û£¬²¢×÷³öƵÊýͳ¼Æ±íÈçÏ£º
±í1£ºÄÐÐÔ
µÈ¼¶Ï²»¶Ò»°ã²»Ï²»¶
ƵÊý15x5
±í2£ºÅ®ÐÔ
µÈ¼¶Ï²»¶Ò»°ã²»Ï²»¶
ƵÊý153y
£¨¢ñ£©ÓɱíÖÐͳ¼ÆÊý¾ÝÌîдÏÂÃæ2¡Á2ÁÐÁª±í£¬²¢ÅжÏÊÇ·ñÓÐ90%µÄ°ÑÎÕÈÏΪ¡°Ï²»¶ÇÀºì°üÓëÐÔ±ðÓйء±£»
ÄÐÐÔÅ®ÐÔ×ܼÆ
ϲ»¶15          15    30     
·Çϲ»¶10515
×ܼÆ252045
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©2}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®
ÁÙ½çÖµ±í£º
P£¨K2¡Ýk0£©0.100.050.01
k02.7063.8416.635
£¨¢ò£©´Ó±í1¡°Ò»°ã¡±Óë±í2¡°²»Ï²»¶¡±µÄÈËÖÐËæ»úѡȡ2È˽øÐн»Ì¸£¬ÇóËùÑ¡2ÈËÖÐÖÁÉÙÓÐ1ÈËÊÇ¡°²»Ï²»¶¡±µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÊýÁÐ{an}ÖУ¬a1=1£¬ÇÒ${a_{n+1}}=\frac{a_n}{{1+{a_n}}}$£¬n¡ÊN*£¬¢ÙÇóa2£¬a3£¬a4²¢²ÂÏëÊýÁеÄͨÏʽ£¬¢ÚÊÔÖ¤Ã÷ÄãµÄ²ÂÏ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®¶ÔÓÚ¶¨ÒåÔÚRÉϵĿɵ¼º¯Êýf£¨x£©£¬ÃüÌâp£ºf£¨x£©ÔÚx=x0´¦µ¼ÊýֵΪ0£¬ÃüÌâq£ºº¯Êýf£¨x£©ÔÚx=x0´¦È¡µÃ¼«Öµ£¬ÔòÃüÌâpÊÇÃüÌâq³ÉÁ¢µÄ£¨¡¡¡¡£©
A£®±ØÒª²»³ä·ÖÌõ¼þB£®³ä·Ö²»±ØÒªÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªx£¬yÂú×ã²»µÈʽ$\left\{\begin{array}{l}4x-y+2¡Ý0\\ 2x+y-8¡Ý0\\ x¡Ü2\end{array}\right.$£¬Éèz=$\frac{y}{x}$£¬ÔòzµÄ×î´óÖµÓë×îСֵµÄ²îΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º£¨n+1£©£¨n+2£©£¨n+3£©¡­£¨n+n£©=2n•1•3¡­£¨2n-1£©£¨n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®º¯Êýy=sin x+1Óëy=2µÄͼÏóÔÚ[-2¦Ð£¬2¦Ð]ÉϽ»µã¸öÊýÊÇ£¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖª¡ÑO1£º£¨x-1£©2+y2=4£¬¡ÑO2£ºx2+£¨y-$\sqrt{3}$£©2=9£®ÇóÁ½Ô²µÄ¹«¹²ÏÒ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸