精英家教网 > 高中数学 > 题目详情
如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC、ED,则cos2∠CED=(  )
A、
1
3
B、
3
5
C、
2
3
D、
4
5
考点:二倍角的余弦
专题:三角函数的求值
分析:由正方形边长与AE相等,得到三角形AED为等腰直角三角形,确定出∠EDC=135°,再直角三角形BCE中,利用勾股定理求出CE的长,在三角形CDE中,利用正弦定理求出sin∠CED的值,所求式子利用二倍角的余弦函数公式化简,把sin∠CED的值代入计算即可求出值.
解答: 解:∵四边形ABCD为正方形,且边长为1,
∴∠B=∠ADC=90°,AB=BC=CD=AD=AE=1,
∴△AED为等腰直角三角形,
∴∠AED=∠ADE=45°,
∴∠EDC=135°,
在Rt△BCE中,根据勾股定理得:EC=
EB2+BC2
=
22+12
=
5

在△DEC中,利用正弦定理得:
EC
sin∠EDC
=
DC
sin∠CED
,即
5
sin135°
=
1
sin∠CED

∴sin∠CED=
10
10

则cos2∠CED=1-2sin2∠CED=
4
5

故选:D.
点评:此题考查了二倍角的正弦函数公式,正方形的性质,等腰直角三角形的性质,以及正弦定理,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是
 

①对任意x∈(-∞,1),都有f(x)<0;
②存在x∈R,使ax,bx,cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,存在x∈(1,2)使f(x)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足不等式
4x-y+2≥0
2x+y-8≥0
x≤2
,设z=
y
x
,则z的最大值与最小值的差为(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是坐标原点,点A(-2,1),若点M(x,y)为平面区域
x+y≥2
x≤1
y≤2
上的一个动点,则
OA
OM
的取值范围是(  )
A、[-1,0]
B、[-1,2]
C、[0,1]
D、[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论错误的是(  )
A、命题“若p,则q”与命题“若非q,则非p”互为逆否命题
B、“sinx=
1
2
”是“x=
π
6
”的充分而不必要条件
C、为得到函数y=sin(2x-
π
3
)的图象只需把y=sin(2x+
π
6
)的图象向右平移
π
4
个长度单位
D、命题q:?x∈R,sinx-cosx≤
2
,则¬q是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题是真命题的有(  )
①“等边三角形的三个内角均为60°”的逆命题;
②“若k>0,则方程x2+2x-k=0有实根”的逆否命题;
③“全等三角形的面积相等”的否命题.
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

下列古典概型的说法中正确的个数是(  )
①试验中所有可能出现的基本事件只有有限个;
②每个事件出现的可能性相等;
③基本事件的总数为n,随机事件A包含k个基本事件,则P(A)=
k
n

④每个基本事件出现的可能性相等.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

称满足以下两个条件的有穷数列a1,a2,…,an为n(n=2,3,4,…)阶“期待数列”:
①a1+a2+a3+…+an=0;②|a1|+|a2|+|a3|+…+|an|=1.
(1)若等比数列{an}为2k(k∈N*)阶“期待数列”,求公比q及{an}的通项公式;
(2)若一个等差数列{an}既是2k(k∈N*)阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记n阶“期待数列”{an}的前k项和为Sk(k=1,2,3,…,n):
(i)求证:|Sk|
1
2

(ii)若存在m∈{1,2,3,…,n}使Sm=
1
2
,试问数列{Sk}能否为n阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥S-ABCD的各棱长为5,底面为正方形,各侧面均为正三角形,求它的表面积.

查看答案和解析>>

同步练习册答案