精英家教网 > 高中数学 > 题目详情
5.(1)已知α是第三角限的角,化简$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$;
(2)求证:$\frac{1-ta{n}^{2}θ}{1+ta{n}^{2}θ}$=cos2θ-sin2θ.

分析 (1)利用诱导公式化简求解即可.
(2)利用同角三角函数基本关系式,证明即可.

解答 解:(1)∵α是第三角限的角,
∴$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$
=$\sqrt{\frac{(1+sinα)^{2}}{1-si{n}^{2}α}}-\sqrt{\frac{(1-sinα)^{2}}{1-si{n}^{2}α}}$
=-$\frac{1+sinα}{cosα}+$$\frac{1-sinα}{cosα}$
=-2tanα;…,(6分)      
(2)证明:$\frac{1-ta{n}^{2}θ}{1+ta{n}^{2}θ}$=$\frac{1-\frac{si{n}^{2}θ}{co{s}^{2}θ}}{1+\frac{si{n}^{2}θ}{co{s}^{2}θ}}$=cos2θ-sin2θ.…(12分)

点评 本题考查同角三角函数基本关系式的应用,三角函数化简求值,恒等式的证明,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知抛物线y=ax2(a>0)的焦点到准线距离为1,则a=(  )
A.4B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知F为抛物线y2=2px(p>0)的焦点,点A(p,2)在抛物线上,则|AF|=$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,斜三棱柱ABC-A1B1C1中,平面ACC1A1⊥平面BCC1B1,E为棱CC1的中点,A1B与AB1交于点O.若AC=CC1=2BC=2,∠ACC1=∠CBB1=60°.
(Ⅰ)证明:直线OE∥平面ABC;
(Ⅱ)证明:平面ABE⊥平面AB1E;
(Ⅲ)求直线A1B与平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,正方体ABCD-A1B1C1D1中,点M,N分别是CD、DD1的中点.
(1)求证:BN⊥A1C1
(2)求BB1和平面A1C1M所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简:$\overrightarrow{AB}$+$\overrightarrow{CD}$+$\overrightarrow{EC}$-$\overrightarrow{EB}$=$\overrightarrow{AD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用反证法证明命题“若sinθ$\sqrt{1-{{cos}^2}θ}$+cosθ•$\sqrt{1-{{sin}^2}θ}$=1,则sinθ≥0且cosθ≥0”时,下列假设的结论正确的是(  )
A.sinθ≥0或cosθ≥0B.sinθ<0或cosθ<0C.sinθ<0且cosθ<0D.sinθ>0且cosθ>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax-$\frac{1}{x}$-(a+1)lnx,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a≥1时,若f(x)>1在区间[$\frac{1}{e}$,e]上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知对满足x+y+4=2xy的任意正实数x,y,都有x2+2xy+y2-ax-ay+1≥0,则实数a的取值范围为(-∞,$\frac{17}{4}$].

查看答案和解析>>

同步练习册答案