| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
分析 利用三角形内角和定理及两角和的余弦函数公式化简已知可得cosA=$\frac{3}{5}$,从而可求sinA=$\frac{4}{5}$,由正弦定理可得sinB,利用大边对大角可得B为锐角,即可得解.
解答 解:∵cos(A-B)cosB-sin(A-B)sin(A+C)=$\frac{3}{5}$,
∴cos(A-B)cosB-sin(A-B)sinB=$\frac{3}{5}$,则cos(A-B+B)=$\frac{3}{5}$,即:cosA=$\frac{3}{5}$,
∴sinA=$\frac{4}{5}$,
∵a>b,
∴A>B,即B为锐角,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}=\frac{\frac{5}{2}×\frac{4}{5}}{4}=\frac{1}{2}$,解得:B=$\frac{π}{6}$.
故选:A.
点评 本题主要考查了三角形内角和定理及两角和的余弦函数公式,正弦定理,大边对大角等知识的综合应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(sinA)≤f(cosB) | B. | f(sinA)≤f(sinB) | C. | f(cosA)≤f(sinB) | D. | f(cosA)≤f(cosB) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | 0 | D. | $\frac{1}{{{{cos}^2}α}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com