精英家教网 > 高中数学 > 题目详情
2.数列{an}为等差数列,满足a2+a4+…+a20=10,则数列{an}前21 项的和等于(  )
A.$\frac{21}{2}$B.21C.42D.84

分析 利用等差中项的性质,表示成na11,计算即可.

解答 解:根据题意,得10=a2+a4+…+a20=a2+a20+a4+a18+…+a10+a12=10a11
∴a11=1,
∴S21=a1+a21+a2+a20+…+a10+a12+a11=21a11=21,
故选:B.

点评 本题考查等差数列的性质,利用等差中项的性质将所求值表示成na11是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.将函数$f(x)=cos({x+\frac{π}{3}})$的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,所得图象的一条对称轴方程可能是(  )
A.$x=\frac{π}{3}$B.$x=-\frac{π}{6}$C.$x=-\frac{π}{3}$D.$x=-\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.为得到函数f(x)=cosx-$\sqrt{3}$sinx,只需将函数y=$\sqrt{2}cosx+\sqrt{2}$sinx(  )
A.向左平移$\frac{5π}{12}$B.向右平移$\frac{5π}{12}$C.向左平移$\frac{7π}{12}$D.向右平移$\frac{7π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.岳阳市为了改善整个城市的交通状况,对过洞庭大桥的车辆通行能力进行调查.统计数据显示:在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过30辆/千米时,车流速度为85千米/小时,研究表明:当30≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆的焦点分别为F1(-4,0),F2(4,0),离心率e=0.8.
(1)求椭圆的标准方程;
(2)在椭圆上是否存在点P,使$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$=0,若存在,求出坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在锐角△ABC 中,角 A,B,C 所对的边分别为a,b,c,已知a=$\sqrt{7}$,b=3,$\sqrt{7}$sinB+sinA=2$\sqrt{3}$.
(Ⅰ) 求角A 的大小;
(Ⅱ) 求△ABC 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ex-ax(e为自然对数的底数).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)定义:函数F(x)的定义域为D,若?x0∈D,使F(x0)=x0成立,则称x0为F(x)的不动点.
当a=1时,
(ⅰ)证明:函数y=$\frac{1}{f(x)}$(x>0)存在唯一的不动点x0,且x0∈(ln2,1);
(ⅱ)已知数列{an}满足a1=ln2,an+1=$\frac{1}{f({a}_{n})}$(n∈N*),求证:?n∈N*,$\frac{f({a}_{2n})-f({x}_{0})}{{a}_{2n}-{x}_{0}}$>f(x0)+x0-1,(其中x0为y=$\frac{1}{f(x)}$(x>0)的不动点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知定义在R上的单调函数f(x)满足:对任意的x,都有f(f(x)-2x)=6,则不等式f(x+2)≥3f(-x)的解集为(  )
A.[log2$\frac{3}{2}$,+∞)B.(-∞,log2$\frac{3}{2}$]C.[log25,+∞)D.(-∞,log25]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求两平行线x+y-1=0与2x+2y=0间的距离.

查看答案和解析>>

同步练习册答案